Q-switched thulium-doped fiber laser operating at 1920 nm region with multiwalled carbon nanotubes embedded in polyvinyl alcohol

2014 ◽  
Vol 56 (12) ◽  
pp. 2817-2819 ◽  
Author(s):  
M. T. Ahmad ◽  
A. A. Latiff ◽  
Z. Zakaria ◽  
D. I. M. Zen ◽  
N. Saidin ◽  
...  
2016 ◽  
Vol 55 (10) ◽  
pp. 106112 ◽  
Author(s):  
Mohd Zulhakimi Ab Razak ◽  
Zatul Saliza Saleh ◽  
Fauzan Ahmad ◽  
Carol Livan Anyi ◽  
Sulaiman W. Harun ◽  
...  

ACS Omega ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 4184-4191
Author(s):  
Yusliza Yusof ◽  
Seyedehmaryam Moosavi ◽  
Mohd Rafie Johan ◽  
Irfan Anjum Badruddin ◽  
Yasmin Abdul Wahab ◽  
...  

2011 ◽  
Vol 11 (11) ◽  
pp. 10211-10218 ◽  
Author(s):  
Márcia W. C. C. Greenshields ◽  
Ivo A. Hümmelgen ◽  
Messai A. Mamo ◽  
Ahmed Shaikjee ◽  
Sabelo D. Mhlanga ◽  
...  

2017 ◽  
Vol 52 (12) ◽  
pp. 1617-1626 ◽  
Author(s):  
Cesar A Isaza M ◽  
JM Herrera Ramírez ◽  
JE Ledezma Sillas ◽  
JM Meza

In recent years, due to their high specific mechanical properties, polymer matrix composites have been widely used. In particular, carbon nanotubes have been used as reinforcement because of their exceptional properties. In this work, the degree of dispersion and alignment of multiwalled carbon nanotubes into polyvinyl alcohol was quantified, which is a key information to optimize the mechanical properties of composites. For the dispersion of the multiwalled carbon nanotubes into the solution, a magnetic stirring and ultrasonic agitation were used. Finally, the mixture was dried to obtain a multiwalled carbon nanotubes reinforced polymer. The composites were mechanically stretched to obtain sheets with multiwalled carbon nanotubes aligned in the stretching direction. The layers obtained were prepared for transmission electron microscopy analysis. A dispersion quantification method based on the statistical distribution of horizontal and vertical separation distance between carbon nanotubes was used; a lognormal distribution was obtained. The angle of carbon nanotubes with respect to the stretching direction was used to quantify the alignment degree of carbon nanotubes. The bulk mechanical properties of the composites were measured by nanoindentation test; tensile test allowed to measure the mechanical properties of the composites in both the stretching and perpendicular directions to the stretching direction. Multiwalled carbon nanotubes showed a good dispersion and alignment degree and this, in conjunction with stretching, produced a high increase of both the stiffness and strength in the stretching direction, which allowed an increment of the mechanical properties measured by nanoindentation test; the best properties of the composites were reached with 0.5 wt% of MWCNTs.


Sign in / Sign up

Export Citation Format

Share Document