A broadband dual-polarized printed dipole antenna with low cross-polarization and high isolation for base station applications

2017 ◽  
Vol 59 (5) ◽  
pp. 1107-1111 ◽  
Author(s):  
Deqiang Yang ◽  
Sihao Liu ◽  
Zhiqin Zhao
2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xujun Yang ◽  
Lei Ge ◽  
Dengguo Zhang ◽  
Chow-Yen-Desmond Sim

A dual-polarized aperture-coupled magnetoelectric (ME) dipole antenna is presented in this paper. The feeding network is based on substrate-integrated coaxial lines (SICLs). To describe the effect of the SICL on improving the isolation, the ME dipole with another two different feeding configurations, microstrip lines and striplines, respectively, is compared. As such, the coupling between the transmission lines is tremendously reduced and the isolation between the two input ports of different polarization is enhanced. An antenna prototype is fabricated and tested, exhibiting good performances, including an isolation level of higher than 30 dB between the two input ports and gains of more than 9.5 dBi. Besides, the proposed design is capable of achieving stable directional radiation patterns with cross-polarization levels lower than −22 dB and back radiation levels lower than −24 dB.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1574
Author(s):  
Chenyang Liao ◽  
Bin Wang ◽  
Congcong Zhu ◽  
Honggang Hao ◽  
Bo Yin

A broadband dual-polarized base station antenna is proposed in this paper. The antenna consists of loop cross-dipoles, Y-shaped coupling feeding lines, and a metal box reflector. An equivalent circuit model including a signal flow diagram is established to analyze the mechanism of the proposed antenna in detail. Moreover, the Y-shaped coupling feeding lines are introduced to control the coupling with the antenna to achieve broadband and good impedance matching. The prototype of the antenna is fabricated and measured. The measured results show that the antenna with simple structures can operate at the band of 3.2–5.22 GHz (48%) with high port-to-port isolation (35 dB) and stable gain (9 ± 1 dBi). The measured results show good agreement with simulated results, especially in cross-polarization discrimination ratio (>27 dB) and the half power beam width (61° ± 3° at the E-plane, 68° ± 3° at the H-plane). In summary, the proposed antenna could be a good candidate for 5G sub-6 GHz base station applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Zhi-Ya Zhang ◽  
Jia-Yue Zhao ◽  
Qiongqiong Liu ◽  
Guang Fu

A dual-polarized cross bowtie dipole element with parasitical circular patch and vertical metal cylinders for base station antennas is presented. A pair of orthogonal cross bowtie dipoles, with a reflector ground plane, is used to obtain the two linear polarizations. Besides two inverted L-shaped feed strips and two shorted feed baluns, parasitical circular patch is introduced to improve the impendence bandwidth and vertical metal cylinders are employed to decrease the lateral dimensions of the antenna. A wideband impedance characteristic of about 45.6% for VSWR ≤ 1.5 (+45° polarization) and VSWR ≤ 1.5 (−45° polarization) ranging from 1.76 to 2.80 GHz is obtained. Moreover, the stable peak gain, unidirectional radiation patterns, high isolation between the two orthogonal polarizations, and low cross-polarization over the whole operating band are also achieved. The proposed antenna is very suitable for potential base station applications in mobile communication such as TD-SCDMA, WCDMA, and CDMA2000 and LTE applications.


Sign in / Sign up

Export Citation Format

Share Document