Low‐power inductorless wideband SFBB balun low noise amplifier with noise reduction and third‐order transconductance optimization

2020 ◽  
Vol 62 (12) ◽  
pp. 3864-3868
Author(s):  
Shashank Tiwari ◽  
Jayanta Mukherjee
2021 ◽  
Author(s):  
Rafael Vieira ◽  
Nuno Horta ◽  
Nuno Lourenço ◽  
Ricardo Póvoa

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Chrisben Gladson ◽  
Adith Hari Narayana ◽  
V. Thenmozhi ◽  
M. Bhaskar

AbstractDue to the increased processing data rates, which is required in applications such as fifth-generation (5G) wireless networks, the battery power will discharge rapidly. Hence, there is a need for the design of novel circuit topologies to cater the demand of ultra-low voltage and low power operation. In this paper, a low-noise amplifier (LNA) operating at ultra-low voltage is proposed to address the demands of battery-powered communication devices. The LNA dual shunt peaking and has two modes of operation. In low-power mode (Mode-I), the LNA achieves a high gain ($$S21$$ S 21 ) of 18.87 dB, minimum noise figure ($${NF}_{min.}$$ NF m i n . ) of 2.5 dB in the − 3 dB frequency range of 2.3–2.9 GHz, and third-order intercept point (IIP3) of − 7.9dBm when operating at 0.6 V supply. In high-power mode (Mode-II), the achieved gain, NF, and IIP3 are 21.36 dB, 2.3 dB, and 13.78dBm respectively when operating at 1 V supply. The proposed LNA is implemented in UMC 180 nm CMOS process technology with a core area of $$0.40{\mathrm{ mm}}^{2}$$ 0.40 mm 2 and the post-layout validation is performed using Cadence SpectreRF circuit simulator.


Integration ◽  
2019 ◽  
Vol 69 ◽  
pp. 189-197 ◽  
Author(s):  
Asieh Parhizkar Tarighat ◽  
Mostafa Yargholi

2018 ◽  
Vol 7 (2.24) ◽  
pp. 448
Author(s):  
S Manjula ◽  
M Malleshwari ◽  
M Suganthy

This paper presents a low power Low Noise Amplifier (LNA) using 0.18µm CMOS technology for ultra wide band (UWB) applications. gm boosting common gate (CG) LNA is designed to improve the noise performance.  For the reduction of on chip area, active inductor is employed at the input side of the designed LNA for input impedance matching. The proposed UWB LNA is designed using Advanced Design System (ADS) at UWB frequency of 3.1-10.6 GHz. Simulation results show that the gain of 10.74+ 0.01 dB, noise figure is 4.855 dB, input return loss <-13 dB and 12.5 mW power consumption.  


2008 ◽  
Vol 51 (2) ◽  
pp. 494-496
Author(s):  
Hee-Sauk Jhon ◽  
Ickhyun Song ◽  
Jongwook Jeon ◽  
MinSuk Koo ◽  
Byung-Gook Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document