Accelerated multi‐contrast reconstruction for synthetic MRI using joint parallel imaging and variable splitting networks

2021 ◽  
Author(s):  
Kanghyun Ryu ◽  
Jae‐Hun Lee ◽  
Yoonho Nam ◽  
Sung‐Min Gho ◽  
Ho‐Sung Kim ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Wenlong Xu ◽  
Xiaofang Liu ◽  
Xia Li

Parallel imaging is a rapid magnetic resonance imaging technique. For the ill-conditioned problem, noise and aliasing artifacts are amplified during the reconstruction process and are serious especially for high accelerating imaging. In this paper, a sparse constrained reconstruction problem is proposed for parallel imaging, and an effective solution based on the variable splitting method is contrived. First-order and second-order norm optimization problems are first split, and then they are transferred to unconstrained minimization problem by the augmented Lagrangian method. At last, first-order norm and second-order norm optimization problems are alternatively resolved by different methods. With a discrepancy principle as the stopping criterion, analysis of simulated and actual parallel magnetic resonance image reconstruction is presented and discussed. Compared with the routine parallel imaging reconstruction methods, the results show that the noise and aliasing artifacts in the reconstructed image are evidently reduced at large acceleration factors.



2021 ◽  
Vol 78 ◽  
pp. 90-97
Author(s):  
Syo Murata ◽  
Akifumi Hagiwara ◽  
Shohei Fujita ◽  
Takuya Haruyama ◽  
Shimpei Kato ◽  
...  


Author(s):  
Lee H. Veneklasen

This paper discusses some of the unique aspects of a spectroscopic emission microscope now being tested in Clausthal. The instrument is designed for the direct parallel imaging of both elastic and inelastic electrons from flat surfaces. Elastic contrast modes of the familiar LEEM include large and small angle LEED, mirror microscopy, backscatter diffraction contrast (for imaging of surface structure), and phase contrast (for imaging of step dynamics)(1). Inelastic modes include topology sensitive secondary, and work function sensitive photoemission. Most important, the new instrument will also allow analytical imaging using characteristic Auger or soft X-ray emissions. The basic instrument has been described by Bauer and Telieps (2). This configuration has been redesigned to include an airlock, and a LaB6 gun, triple condensor lens, magnetic objective lens, a double focussing separator field, an imaging energy analyzer, and a real time image processor.Fig. 1 shows the new configuration. The basic beam voltage supply Vo = 20 KV, upon which separate supplies for the gun Vg, specimen Vs, lens electrode Vf, and analyzer bias Vb float. The incident energy at the sample can be varied from Vs = 0-1 KV for elastic imaging, or from Vg + Vs = (3 + Vs) KV for inelastic imaging. The image energy window Vs±V/2 may be varied without readjusting either the illumation, or imaging/analyzer optics. The diagram shows conjugate diffraction and image planes. The apertures defining incoming Humiliation and outgoing image angles are placed below the separator magnet to allow for their independent optimization. The instrument can illuminate and image 0.5-100 μm fields at 0-1 keV emission energies with an energy window down to 0.2 eV.



VASA ◽  
2009 ◽  
Vol 38 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Schubert

We describe a case of aortic coarctation at the level of the infrarenal abdominal aorta which is encountered in less than six individuals in one million. In contrast to aortic narrowing above or including the renal arteries, this seems to be a relatively benign anomaly without systemic hypertension or impaired renal function. For the first time in this type of anomaly, contrast-enhanced MR angiography (ce-MRA) on a multi-receiver channel MR system, with an 8-channel phased array coil and parallel imaging was used. Ce-MRA displayed a tortuous, narrowed aortic segment that was found to be associated with mesenteric artery stenosis and compression of the orthotopic left renal vein, also known as the nutcracker phenomenon. All major aortic branches could be depicted using 3D surface-shaded displays and subvolume maximum intensity projections (MIPs). Collateral vessels of the abdominal wall were identified using whole-volume MIPs. Since the majority of aortic malformations are diagnosed at a younger age, and many suffer from renal insufficiency, we conclude that ce-MRA will eventually place conventional DSA as the modality of choice in malformations of the abdominal aorta.



Author(s):  
B Spors ◽  
P Freyhardt ◽  
K Klimes ◽  
M Grothoff ◽  
R Noeske ◽  
...  


2019 ◽  
Vol 75 (2) ◽  
pp. 160-166
Author(s):  
Akihito Ikeda ◽  
Kohki Yoshikawa
Keyword(s):  


Author(s):  
Matteo Alessandro Francavilla ◽  
Stamatios Lefkimmiatis ◽  
Jorge F. Villena ◽  
Athanasios G. Polimeridis
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document