13C13C spin-spin coupling constants and13C isotope effects on13C chemical shifts in some 4-membered rings

1978 ◽  
Vol 11 (3) ◽  
pp. 157-159 ◽  
Author(s):  
Jukka Jokisaari
1979 ◽  
Vol 34 (3) ◽  
pp. 528-529 ◽  
Author(s):  
Rafet Aydin ◽  
Harald Günther

Abstract One-bond, geminal, and vicinal 13C, 1H coupling constants have been determined for adamantane using α-and β-[D]adamantane and the relation nJp(13C, 1H) = 6,5144 nJ(13C, 2H) for the conversion of the measured nJ(13C, 2H) values. It is shown that the magnitude of 3Jtrans is strongly influenced by the substitution pattern. Relative H,D isotope effects for 13C chemical shifts are given.


1986 ◽  
Vol 64 (11) ◽  
pp. 2162-2167 ◽  
Author(s):  
Ted Schaefer ◽  
James Peeling ◽  
Glenn H. Penner

13C,19F and 19F,19F nuclear spin–spin coupling constants over n formal bonds, n = 1–9, are reported for 4-fluorobiphenyl, 4,4′-difluorobiphenyl, 4,4′-difluoro-2,2′,6,6′-tetramethylbiphenyl, 2,7-difluorofluorene, 2-fluoro-9-fluorenone, and 2,7-difluoro-9-fluorenone in acetone solutions. The signs of many of the coupling constants are deduced from second-order spectral phenomena caused by differential 13C isotope effects on the I9F nmr chemical shifts. Theoretical potentials, based on geometry-optimized STO 3G MO computations for 4-fluorobiphenyl and 4,4′-difluorobiphenyl, yield expectation values for the torsion angles about the exocyclic C—C linkage that are very close to those deduced from electron diffraction patterns. These potentials and INDO MO FPT computations of the long-range coupling constants allow a discussion of the coupling mechanisms. In Hz, 9J(F,F) = 1.3(1) cos2 θ, where θ is zero for a planar biphenyl, while 8J(C,F) = 0.8(1) cos2 θ and 7J(C,F) = −0.43(5) cos2 θ. 6J(C,F) is a composite of σ–π and π electron coupling components and is written in Hz as 0.57(1) + 0.29(1) sin2 θ. The corresponding coupling constants in the fluorene and 9-fluorenone derivatives are enhanced in magnitude relative to a hypothetical planar biphenyl derivative. It is tentatively suggested that 5J(C,F) consists of three coupling components, one negative and proportional to cos2 θ, the other two positive and independent of θ. 4J(C,F) is suggested to consist of a σ component of −1.0 Hz and a π component proportional to the atom–atom polarizability for the parent hydrocarbon.


Author(s):  
Fabio Luiz Paranhos Costa ◽  
Ana Carolina Ferreira de Albuquerque ◽  
Rodolfo Goetze Fiorot ◽  
Luciano Morais Lião ◽  
Lucas Haidar Martorano ◽  
...  

The calculation of NMR parameters for natural products was pioneered by Bifulco and coworkers in 2002. Since then, modelling 1H and 13C chemical shifts and spin-spin coupling constants for this...


1983 ◽  
Vol 61 (1) ◽  
pp. 26-28
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian

The 1H nmr spectral parameters are extracted for a 4 mol% solution of 2-methylthiobenzaldehyde in CCl4 at 305 K. The long-range spin–spin coupling constants involving the aldehydic and methyl protons are consistent only with a preferred conformation in which all heavy atoms are coplanar, as are the chemical shifts of the ring and methyl protons. This conclusion contradicts previous interpretations of the dipole moment, the nmr parameters, and of the infrared data for CCl4 solutions. The present data show that the O-syn and O-anti forms of the compound are present in roughly equal proportions.


1982 ◽  
Vol 37 (5) ◽  
pp. 631-645 ◽  
Author(s):  
Dieter Rehder ◽  
Hans-Christoph Bechthold ◽  
Ahmet Keçeci ◽  
Hartwig Schmidt ◽  
Michael Siewing

Variations of the metal chemical shifts δ(51V), δ(55Mn) and δ(93Nb) with the paramagnetic deshielding contribution to the overall shielding are discussed in terms of influences imposed by the ligand field splitting, the nephelauxetic effect and the covalency of the metal-to-ligand bond. Complexes under investigation are isoelectronic and/or iso-structural series [M(CO)6-nLn]q (M = V, Nb: q = -1; M = Mn: q = + 1; n = 0-6), η5-C5H5M(CO)4-nLn (M = V, Nb; n = 0-4) and η5-C5H5M(L')2L (M = V, L' = NO; M = Mn, L' = CO). L is a monodentate or l/n oligodentate phosphine. η varies with the point symmetry of the complex, and with ligand parameters of primarily electronic or steric origin. Generally, for weak to medium π-interaction, there is a decrease of shielding with decreasing π-acceptor power of the ligand, increasing ligand bulkiness, increasing ring strains in chelate structures and increasing degree of substitution. For strong π-interaction, the trends may be interconverted. PF3 is shown to be a slightly weaker π-acceptor than CO. Selected results on nuclear-spin spin coupling constants, 13C and 31P shielding are also presented


2005 ◽  
Vol 127 (48) ◽  
pp. 17079-17089 ◽  
Author(s):  
Petr Bouř ◽  
Miloš Buděšínský ◽  
Vladimír Špirko ◽  
Josef Kapitán ◽  
Jaroslav Šebestík ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document