Chemometric analysis of disubstituent effects on the13C chemical shifts of the carboxyl carbons (δCO) of benzoic acids. A comparative study of the substituent effects on the strength of benzoic acids in apolar aprotic media

2007 ◽  
Vol 45 (12) ◽  
pp. 1035-1039 ◽  
Author(s):  
Susanta K. Sen Gupta ◽  
Ruchi Shrivastava
1995 ◽  
Vol 60 (8) ◽  
pp. 1316-1332 ◽  
Author(s):  
Oldřich Pytela ◽  
Aleš Halama

The paper deals with chemometric analysis of the inductive effect. The notion of inductive effect is discussed, and unambiguous definitions are given for the notions of triad: reaction centre-basic skeleton-substituent, and the therewith connected definitions of inductive effect. For a quantitative description of inductive effect 7 types of chemical models were selected including noncyclic compounds, cyclic, and bicyclic compounds, derivatives of quinuclidine, 3-substituted benzoic acids, sulfonamides and pyridines. Altogether 139 sets of experimental data from literature have been used including altogether 1 294 points (9.3 points per set, 5 points at least) reflecting substituent effects of 34 substituents. It has been found that for a standard model the dissociation of substituted bicycloalkanecarboxylic acids only is satisfactory, all the other models reflecting also the mesomeric effects to variable extent (up to 10%). A distinctly different substitution behaviour was observed with 19F and 13C NMR chemical shifts of 4-substituted 1-fluoro- or 1-methylbicyclo[2.2.2]octanes. The earlier suggested model of substituent effects based on different way of transmission of substituent effects (3 classes) has been used for separating the inductive and mesomeric effects: it is mathematically presented as a set of straight lines with the intersection point at the so-called isoeffect substituent constant. Using the modified method of conjugated deviations a chemometric scale has been created for the inductive effect which agrees very well with the conventional scales given in literature; the only differences were observed for F and CH=O substituents (which are overestimated and underestimated, respectively, in literature). In the context given the inductive effect appears as a fundamental quantity forming a basis for quantitative description of other effects transferred by electrons.


1978 ◽  
Vol 56 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Robert Faure ◽  
Jean-Pierre Galy ◽  
Emile-Jean Vincent ◽  
José Elguero

Carbon-13 nmr spectra of 18 thiazoles with different substituents (R = CH3, C6H5, Cl, Br, NH2 et N3) have been recorded. The 13C chemical shifts and the nJ(C,H) coupling constants are discussed as a function of the nature of the substituent and the electronic structure of the thiazole ring. The 2-azido substituted thiazoles show azido-tetrazole isomerism, making possible a comparative study of substituent effects in thiazole and thiazolotetrazole rings. These studies have been extended to other heterocycles: benzothiazole, isothiazole, and isoxazole.


2010 ◽  
Vol 63 (2) ◽  
pp. 321 ◽  
Author(s):  
Susanta K. Sen Gupta ◽  
Rajendra Prasad

Studies of substituent effects on NMR chemical shifts are of great benefit in determining fine details of electron distribution in molecules. Interestingly, NMR substituent effects are often different and even opposite to those associated with chemical reactivity. Among molecules exhibiting anomalous (reverse) substituent effects is benzoic acid, the standard model for studying substituent effects. The substituent effect on the 13C chemical shift of its carboxyl carbon (δ CO) is just the opposite of that on its acid strength or reactivity. To develop insights into the origin of the anomalous effect of a substituent on δ CO, occupancies of natural atomic orbitals at the carboxyl and ring carbons of a set of 10 meta-substituted benzoic acids have been calculated at the density functional theory level using the B3LYP function with split valance 6–311G++** basis set. Statistical correlations obtained for the 13C chemical shifts, δ CO and δ C-ring of these benzoic acids with the natural atomic orbital occupancies calculated for respective carbon atoms on one hand and with Taft’s inductive and resonance parameters (σ I and σ R BA ) of the substituents on the other hand have been critically analyzed. The findings have established firmly that a meta-substituent’s anomalous effect on δ CO is caused by the substituent-induced changes in the total occupancy of only the p z natural atomic orbitals at the carboxyl carbon. The study has demonstrated further that the transmission of the anomalous effect can be successfully interpreted by a 5.5:–2.5:1 combination of the localized, extended, and resonance-induced π-polarization effects.


1977 ◽  
Vol 55 (9) ◽  
pp. 1567-1574 ◽  
Author(s):  
Paul G. Mezey ◽  
William F. Reynolds

Ab initio (STO-3G) molecular orbital calculations for 4-substituted benzoic acids and XCH3–HCO2H pairs are used to derive a theoretical field, TF and resonance, TR(BA), substituent scale. Comparison with previous calculations for 4-substituted styrenes shows that a common field scale can be used for different systems but that different resonance scales are necessary, depending upon the electronic nature of the probe group. The field effect primarily reflects the direct electrostatic interaction between the substituent and the carboxylic acid. However, there are also significant contributions due to field-induced polarization of the intervening phenyl π electron system. By contrast, the π polarization effect seems to be the dominant field effect in the case of non-interacting probes (such as carbon atomic charges or chemical shifts). A very close parallel is noted between substituent effects upon atomic charges and acid dissociation energies.


2000 ◽  
Vol 65 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Jiří Kulhánek ◽  
Oldřich Pytela ◽  
Antonín Lyčka

The 13C chemical shifts have been measured of the carboxyl carbon atoms for all the 2-, 3-, and 4-substituted benzoic acids with H, CH3, CH3O, F, Cl, Br, I, and NO2 substituents, as well as for all 3,4-, 3,5-, and 2,6-disubstituted benzoic acids with combinations of CH3, CH3O, Cl (or Br), NO2 substituents and for symmetrically 2,6-disubstituted derivatives with Et, EtO, PrO, i-PrO, and BuO substituents. The chemical shifts of carboxylic group carbon atoms of the 3- and 4-substituted derivatives show correlation only with the substituent constants σI. For the 2-substituted derivatives was found the dependence only on σI and on the υ constant describing steric effects (s = 0.122, R = 0.996, without the CH3 derivative which has a distinct anisotropic effect). The substituent effects on the carboxylic carbon chemical shift show additivity with 3,4-, 3,5-, and 2,6-substituents, and the 2,6-disubstituted derivatives show a linear synergic effect of substituents due obviously to the steric hindrance to resonance. Application of the principal component analysis to the data matrix involving all the combinations of mono- and disubstitution involving the above-mentioned substituents has proved an identical substituent effect from all the positions on the chemical shift described by one latent variable, steric effects and anisotropic behaviour of methyl at the 2 and 2,6 positions being predominantly described by the second latent variable (with the total explained variability of 99.5%). Comparison of substituent effects on the chemical shift of carboxylic carbon with that on the dissociation constant measured in the same solvent has confirmed the anisotropy due to ortho methyl group, the ortho halogen substituents in monosubstituted derivatives also having a different effect. The dependence of chemical shift on pKa was not very close for the derivatives studied (s = 1.005, R = 0.690). The inclusion of anisotropy of ortho alkyl group by means of an indicator variable improved the correlation (s = 0.533, R = 0.925), and omitting of 2-F, 2-Cl, 2-Br, and 2-I substituents gave a regression without deviating points (s = 0.352, R = 0.968).


2009 ◽  
Vol 74 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Signe Vahur ◽  
Oksana Travnikova ◽  
Ilmar A. Koppel

The second-order rate constants k (in dm3 mol–1 s–1) for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, have been measured spectrophotometrically in aqueous 0.5 and 2.25 M Bu4NBr at 25 °C. The substituent effects for para and meta derivatives were described using the Hammett relationship. For the ortho derivatives the Charton equation was used. For ortho-substituted esters two steric scales were involved: the EsB and the Charton steric (υ) constants. When going from pure water to aqueous 0.5 and 2.25 M Bu4NBr, the meta and para polar effects, the ortho inductive and resonance effects in alkaline hydrolysis of phenyl esters of substituted benzoic acids, became stronger nearly to the same extent as found for alkaline hydrolysis of C6H5CO2C6H4-X. The steric term of ortho-substituted esters was almost independent of the media considered. The rate constants of alkaline hydrolysis of ortho-, meta- and para-substituted phenyl benzoates (X-C6H4CO2C6H5, C6H5CO2C6H4-X) and alkyl benzoates, C6H5CO2R, in water, 0.5 and 2.25 M Bu4NBr were correlated with the corresponding IR stretching frequencies of carbonyl group, (ΔνCO)X.


Sign in / Sign up

Export Citation Format

Share Document