anomalous effect
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 20)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Chao He ◽  
Ming Yuan ◽  
Bin Jiang ◽  
Lintao Liu ◽  
Qinghang Wang ◽  
...  

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Ruiping Guo ◽  
Rong-Xin Miao

AbstractRecently it is found that Weyl anomaly leads to novel anomalous currents in the spacetime with a boundary. However, the anomalous current is suppressed by the mass of charge carriers and the distance to the boundary, which makes it difficult to be measured. In this paper, we explore the possible mechanisms for the enhancement of anomalous currents. Interestingly, we find that the anomalous current can be significantly enhanced by the high temperature, which makes easier the experimental detection. For free theories, the anomalous current is proportional to the temperature in the high temperature limit. Note that the currents can be enhanced by thermal effects only at high temperatures. In general, this is not the case at low temperatures. For general temperatures, the absolute value of the current of Neumann boundary condition first decreases and then increases with the temperature, while the current of Dirichlet boundary condition always increases with the temperature. It should be mentioned that the enhancement does not have an anomalous nature. In fact, the so-called anomalous current in this paper is not always related to Weyl anomaly. Instead, it is an anomalous effect due to the boundary.


2021 ◽  
Vol 23 (6) ◽  
Author(s):  
Elżbieta Kociołek-Balawejder ◽  
Ewa Stanisławska ◽  
Irena Jacukowicz-Sobala ◽  
Marek Jasiorski

AbstractWhen synthesizing copper compounds containing polymeric adsorbents, it was found that the two copper oxides, Cu2O and CuO, deposited in the skeleton of a strongly basic macroreticular anion exchanger (An) radically diminished the porosity of the obtained composites in relation to the host material. In order to investigate this phenomenon more closely, An/Cu2O and An/CuO (both based on the commercial anion exchanger Amberlite IRA900Cl), containing 8.6 and 8.2 wt% Cu, respectively, were subjected to scrutiny. The porous characteristics of the thermally dried and freeze-dried samples were determined using the N2 adsorption–desorption method and mercury intrusion porosimetry. The thermally dried samples lost their porosity and increased their bulk density in relation to the pure resin indicated a significant reduction in their volume. It was found that during drying, the grains shrank as much as the pores collapsed. The decay of the porous structure resulted from the surface morphology of the Cu2O and CuO particles and their tendency to agglomerate. Both freeze-dried samples retained the porous characteristics typical for macroporous anion exchangers. In contrast to the most popular hybrid ion exchangers containing hydrated polyvalent metal oxides (such FeOOH), An/Cu2O and An/CuO showed markedly strong volume contraction effect in relation to moisture content. Graphical abstract


2021 ◽  
Vol 28 (3) ◽  
pp. 812-823
Author(s):  
Andrey Yu. Gruzinov ◽  
Martin A. Schroer ◽  
Karen Manalastas-Cantos ◽  
Alexey G. Kikhney ◽  
Nelly R. Hajizadeh ◽  
...  

Small-angle X-ray scattering (SAXS) is an established method for studying nanostructured systems and in particular biological macromolecules in solution. To obtain element-specific information about the sample, anomalous SAXS (ASAXS) exploits changes of the scattering properties of selected atoms when the energy of the incident X-rays is close to the binding energy of their electrons. While ASAXS is widely applied to condensed matter and inorganic systems, its use for biological macromolecules is challenging because of the weak anomalous effect. Biological objects are often only available in small quantities and are prone to radiation damage, which makes biological ASAXS measurements very challenging. The BioSAXS beamline P12 operated by the European Molecular Biology Laboratory (EMBL) at the PETRA III storage ring (DESY, Hamburg) is dedicated to studies of weakly scattering objects. Here, recent developments at P12 allowing for ASAXS measurements are presented. The beamline control, data acquisition and data reduction pipeline of the beamline were adapted to conduct ASAXS experiments. Modelling tools were developed to compute ASAXS patterns from atomic models, which can be used to analyze the data and to help designing appropriate data collection strategies. These developments are illustrated with ASAXS experiments on different model systems performed at the P12 beamline.


2021 ◽  
Vol 799 ◽  
pp. 140057
Author(s):  
B. Mirshekari ◽  
A. Zarei-Hanzaki ◽  
A. Barabi ◽  
H.R. Abedi ◽  
S.J. Lee ◽  
...  

2020 ◽  
Vol 124 (44) ◽  
pp. 24361-24371
Author(s):  
Ashima Bajaj ◽  
Prabhleen Kaur ◽  
Aakanksha Sud ◽  
Marco Berritta ◽  
Md. Ehesan Ali

2020 ◽  
Author(s):  
Ashima Bajaj ◽  
Prabhleen Kaur ◽  
Aakanksha Sud ◽  
Marco Berritta ◽  
Md. Ehesan Ali

The molecular topology in the single-molecular nano-junctions through which the de Broglie wave propagates plays a crucial role in controlling the molecular conductance. The enhancement and reduction of the conductance due to constructive and destructive Quantum Interference (QI) in para and meta connected molecules respectively has already been well established. Herein, we investigated the influence of QI on spin transport in the molecular junctions containing organic radicals as magnetic centres. The role of the localized spins on the QI as well as on spin filtering capability is investigated employing density functional theory in combination with non-equilibrium Green's function (NEGF-DFT) techniques. Various organic radicals including nitroxide (NO), phenoxy (PO) and methyl (CH2) radicals attached to the central benzene ring of pentacene with different terminal connections (para and meta) to gold electrodes are examined. Due to more obvious QI effects, para connected pentacene is found to be more conductive than meta one. Surprisingly, on incorporating a radical centre, along with spin filtering, a significant quenching of QI effects is observed which manifests itself in such a way that the conductance of meta coupled radicals is found to be more than para by two orders of magnitude. The decoherence induced by radical centre is analysed and discussed in terms of spin-spin coupling of radical's unpaired electron with the tunneling electrons.<br>


2020 ◽  
Author(s):  
Ashima Bajaj ◽  
Prabhleen Kaur ◽  
Aakanksha Sud ◽  
Marco Berritta ◽  
Md. Ehesan Ali

The molecular topology in the single-molecular nano-junctions through which the de Broglie wave propagates plays a crucial role in controlling the molecular conductance. The enhancement and reduction of the conductance due to constructive and destructive Quantum Interference (QI) in para and meta connected molecules respectively has already been well established. Herein, we investigated the influence of QI on spin transport in the molecular junctions containing organic radicals as magnetic centres. The role of the localized spins on the QI as well as on spin filtering capability is investigated employing density functional theory in combination with non-equilibrium Green's function (NEGF-DFT) techniques. Various organic radicals including nitroxide (NO), phenoxy (PO) and methyl (CH2) radicals attached to the central benzene ring of pentacene with different terminal connections (para and meta) to gold electrodes are examined. Due to more obvious QI effects, para connected pentacene is found to be more conductive than meta one. Surprisingly, on incorporating a radical centre, along with spin filtering, a significant quenching of QI effects is observed which manifests itself in such a way that the conductance of meta coupled radicals is found to be more than para by two orders of magnitude. The decoherence induced by radical centre is analysed and discussed in terms of spin-spin coupling of radical's unpaired electron with the tunneling electrons.<br>


2020 ◽  
Vol 835 ◽  
pp. 155243
Author(s):  
Feng Qi ◽  
Lianxu Yu ◽  
Guangdi Zhao ◽  
Xin Xin ◽  
Bin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document