Twitch potentiation after voluntary contraction and neuromuscular electrical stimulation at various frequencies in human quadriceps femoris

2011 ◽  
Vol 45 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Naokazu Miyamoto ◽  
Atsuki Fukutani ◽  
Toshimasa Yanai ◽  
Yasuo Kawakami
Author(s):  
Amandine Bouguetoch ◽  
Alain Martin ◽  
Sidney Grosprêtre

Abstract Introduction Training stimuli that partially activate the neuromuscular system, such as motor imagery (MI) or neuromuscular electrical stimulation (NMES), have been previously shown as efficient tools to induce strength gains. Here the efficacy of MI, NMES or NMES + MI trainings has been compared. Methods Thirty-seven participants were enrolled in a training program of ten sessions in 2 weeks targeting plantar flexor muscles, distributed in four groups: MI, NMES, NMES + MI and control. Each group underwent forty contractions in each session, NMES + MI group doing 20 contractions of each modality. Before and after, the neuromuscular function was tested through the recording of maximal voluntary contraction (MVC), but also electrophysiological and mechanical responses associated with electrical nerve stimulation. Muscle architecture was assessed by ultrasonography. Results MVC increased by 11.3 ± 3.5% in NMES group, by 13.8 ± 5.6% in MI, while unchanged for NMES + MI and control. During MVC, a significant increase in V-wave without associated changes in superimposed H-reflex has been observed for NMES and MI, suggesting that neural adaptations occurred at supraspinal level. Rest spinal excitability was increased in the MI group while decreased in the NMES group. No change in muscle architecture (pennation angle, fascicle length) has been found in any group but muscular peak twitch and soleus maximal M-wave increased in the NMES group only. Conclusion Finally, MI and NMES seem to be efficient stimuli to improve strength, although both exhibited different and specific neural plasticity. On its side, NMES + MI combination did not provide the expected gains, suggesting that their effects are not simply cumulative, or even are competitive.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Raphael Uwamahoro ◽  
Kenneth Sundaraj ◽  
Indra Devi Subramaniam

AbstractThis research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.


2018 ◽  
Vol 33 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Marwa Mekki ◽  
Thierry Paillard ◽  
Sonia Sahli ◽  
Zouhair Tabka ◽  
Yassine Trabelsi

Objective: To investigate the effectiveness of neuromuscular electrical stimulation added to pulmonary rehabilitation on walking tolerance and balance in patients with chronic obstructive pulmonary disease (COPD). Design: Randomized clinical trial. Setting: Outpatient, Faculty of Medicine of Sousse, Tunisia. Subjects: A total of 45 patients with COPD were assigned to an intervention group ( n = 25) or a control group ( n = 20). Interventions: The intervention group underwent a neuromuscular electrical stimulation added to pulmonary rehabilitation, and the control group underwent only a pulmonary rehabilitation, three times per week during six months. Main Measures: Measures were taken at baseline and after six months of training. A stabilometric platform, time up and go, Berg balance scale tests, 6 minute walking test, and the maximal voluntary contraction were measured. Results: In the intervention group, an increase in an exercise tolerance manifested by a longer distance walked in 6 minute walking test 619.5 (39.6) m was observed in comparison to the control group 576.3 (31.5) m. The values of the time up and go, Berg balance scale, and maximal voluntary contraction in the intervention group at follow-up were significantly higher than those in the control group ( P  = 0.02, P  = 0.01, P  = 0.0002, respectively). The center of pressure in the mediolateral and in the anteroposterior directions, as well as the center of pressure area was significantly more improved in open eyes and closed eyes in the intervention group compared to the control group ( P < 0.001). Conclusion: The neuromuscular electrical stimulation added to pulmonary rehabilitation group benefited from better walking tolerance and greater balance improvement than the only pulmonary rehabilitation.


2001 ◽  
Vol 81 (7) ◽  
pp. 1307-1316 ◽  
Author(s):  
Yocheved Laufer ◽  
Julie Deanne Ries ◽  
Peter M Leininger ◽  
Gad Alon

Abstract Background and Purpose. Neuromuscular electrical stimulation is used by physical therapists to improve muscle performance. Optimal forms of stimulation settings are yet to be determined, as are possible sex-related differences in responsiveness to electrical stimulation. The objectives of the study were: (1) to compare the ability of 3 different waveforms to generate isometric contractions of the quadriceps femoris muscles of individuals without known impairments, (2) to compare muscle fatigue caused by repeated contractions induced by these same waveforms, and (3) to examine the effect of sex on muscle force production and fatigue induced by electrical stimulation. Subjects. Fifteen women and 15 men (mean age=29.5 years, SD=5.4, range=22–38) participated in the study. Methods. A portable battery-operated stimulator was used to generate either a monophasic or biphasic rectangular waveform. A stimulator that was plugged into an electrical outlet was used to generate a 2,500-Hz alternating current. Phase duration, frequency, and on-off ratios were kept identical for both stimulators. Participants did not know the type of waveform being used. Torque was measured using a computerized dynamometer: a maximal voluntary isometric contraction (MVIC) of the right quadriceps femoris muscle set at 60 degrees of knee flexion was determined during the first session. In each of the 3 testing sessions, torque of contraction and fatigue elicited by one waveform were measured. Order of testing was randomized. Torque elicited by electrical stimulation was expressed as a percentage of average MVIC. A mixed-model analysis of variance was used to determine the effect of stimulation and sex on strength of contraction and fatigue. Bonferroni-corrected post hoc tests were used to further distinguish between the effects of the 3 stimulus waveforms. Results. The results indicated that the monophasic and biphasic waveforms generated contractions with greater torque than the polyphasic waveform. These 2 waveforms also were less fatiguing. The torques from the maximally tolerated electrically elicited contractions were greater for the male subjects than for the female subjects. Discussion and Conclusion. Muscle torque and fatigue of electrically induced contractions depend on the waveform used to stimulate the contraction, with monophasic and biphasic waveforms having an advantage over the polyphasic waveform. All tested waveforms elicited, on average, stronger contractions in male subjects than in female subjects when measured as a percentage of MVIC.


Author(s):  
Loïc Espeit ◽  
Vianney Rozand ◽  
Guillaume Y. Millet ◽  
Julien Gondin ◽  
Nicola A. Maffiuletti ◽  
...  

Low-frequency and high-frequency wide-pulse neuromuscular electrical stimulation (NMES) can generate extra-torque (ET) via afferent pathways. Superimposing tendon vibration (TV) to NMES can increase the activation of these afferent pathways and favour ET generation. Knowledge of the characteristics of ET is essential to implement these stimulation paradigms in clinical practice. Thus, we aimed at investigating the effects of frequency and TV superimposition on the occurrence and magnitude of ET in response to wide-pulse NMES. NMES-induced isometric plantar flexion torque was recorded in 30 healthy individuals who performed five NMES protocols: wide-pulse low-frequency (1 ms; 20 Hz; WPLF) and wide-pulse high-frequency (1 ms; 100 Hz; WPHF) without and with superimposed TV (1 mm; 100 Hz) and conventional NMES (50 µs; 20 Hz; reference protocol). Each NMES protocol began with an adjustment of NMES intensity in order to reach 10% of maximal voluntary contraction then consisted of three 20-s trains interspersed by 90 s of rest. The ET occurrence was similar for WPLF and WPHF (p=0.822). In the responders, the ET magnitude was greater for WPHF than WPLF (p<0.001). There was no effect of superimposed TV on ET characteristics. This study reported an effect of NMES frequency on ET magnitude, whereas TV superimposition did not affect this parameter. In the context of our experimental design decisions, the present findings question the clinical use of wide-pulse NMES and its combination with superimposed TV. Yet, further research is needed in order to maximize force production through the occurrence and magnitude of ET.


2015 ◽  
Vol 51 (3) ◽  
pp. 412-418 ◽  
Author(s):  
Sarah Regina Dias Da Silva ◽  
Daria Neyroud ◽  
Nicola A. Maffiuletti ◽  
Julien Gondin ◽  
Nicolas Place

2006 ◽  
Vol 101 (1) ◽  
pp. 228-240 ◽  
Author(s):  
Evan R. L. Baldwin ◽  
Piotr M. Klakowicz ◽  
David F. Collins

Electrical stimulation (1-ms pulses, 100 Hz) produces more torque than expected from motor axon activation (extra contractions). This experiment investigates the most effective method of delivering this stimulation for neuromuscular electrical stimulation. Surface stimulation (1-ms pulses; 20 Hz for 2 s, 100 Hz for 2 s, 20 Hz for 3 s) was delivered to triceps surae and wrist flexors (muscle stimulation) and to median and tibial nerves (nerve stimulation) at two intensities. Contractions were evaluated for amplitude, consistency, and stability. Surface electromyograph was collected to assess how H-reflexes and M-waves contribute. In the triceps surae, muscle stimulation produced the largest absolute contractions (23% maximal voluntary contraction), evoked the largest extra contractions as torque increased by 412% after the 100-Hz stimulation, and was more consistent and stable compared with tibial nerve stimulation. Absolute and extra contraction amplitude, consistency, and stability of evoked wrist flexor torques were similar between stimulation types: torques reached 11% maximal voluntary contraction, and extra contractions increased torque by 161%. Extra contractions were 10 times larger in plantar flexors compared with wrist flexors with muscle stimulation but were similar with nerve stimulation. For triceps surae, H reflexes were 3.4 times larger than M waves during nerve stimulation, yet M waves were 15 times larger than H reflexes during muscle stimulation. M waves in the wrist flexors were larger than H reflexes during nerve (8.5 times) and muscle (18.5 times) stimulation. This is an initial step toward utilizing extra contractions for neuromuscular electrical stimulation and the first to demonstrate their presence in the wrist flexors.


Sign in / Sign up

Export Citation Format

Share Document