scholarly journals Enumerating Predation on Chinook Salmon, Delta Smelt and other San Francisco Estuary Fishes using Genetics

Author(s):  
Scott Brandl ◽  
Brian Schreier ◽  
J Louise Conrad ◽  
Bernie May ◽  
Melinda Baerwald
Author(s):  
Brian Mahardja ◽  
Lara Mitchell ◽  
Michael Beakes ◽  
Catherine Johnston ◽  
Cory Graham ◽  
...  

Monitoring is an essential component in ecosystem management and leveraging existing data sources for multiple species of interest can be one effective way to enhance information when making management decisions. Here we analyzed juvenile Chinook Salmon (Oncorhynchus tshawytscha) bycatch data that has been collected by the recently established Enhanced Delta Smelt Monitoring program (EDSM), a survey designed to estimate the abundance and distribution of the San Francisco Estuary’s (estuary) endangered Delta Smelt (Hypomesus transpacificus). Two key aspects of the EDSM program distinguish it from other fish surveys in the estuary: a stratified random sampling design and the spatial scale of its sampling effort. We integrated the EDSM dataset with other existing surveys in the estuary and used an occupancy model to assess detection probability differences across gear types. We saw no large-scale differences in size selectivity, and while detection probability varied among gear types, cumulative detection probability for EDSM was comparable to other surveys due to the program’s use of replicate tows. Based on our occupancy model and sampling effort in the estuary during spring of 2017 and 2018, we highlighted under-sampled regions that saw improvements in monitoring coverage due to EDSM. Our analysis also revealed that each sampling method has its own benefits and constraints. Although the use of random sites with replicates as conducted by EDSM can provide more statistically robust abundance estimates relative to traditional methods, the use of fixed stations and simple methods such as beach seine may provide a more cost-effective way of monitoring salmon occurrence in certain regions of the estuary. Stronger inference on salmon abundance and distribution can be made by leveraging the strengths of each survey’s method. Careful consideration of these trade-offs is crucial as the management agencies of the estuary continue to adapt and improve their monitoring programs.


Author(s):  
Brian Mahardja ◽  
Lara Mitchell ◽  
Michael Beakes ◽  
Catherine Johnston ◽  
Cory Graham ◽  
...  

Monitoring is an essential component in ecosystem management and leveraging existing data sources for multiple species of interest can be one effective way to enhance information when making management decisions. Here we analyzed juvenile Chinook Salmon (Oncorhynchus tshawytscha) bycatch data that has been collected by the recently established Enhanced Delta Smelt Monitoring program (EDSM), a survey designed to estimate the abundance and distribution of the San Francisco Estuary (estuary) endemic and endangered Delta Smelt (Hypomesus transpacificus). Two key aspects of the EDSM program distinguish it from other fish surveys in the estuary: a stratified random sampling design and the spatial scale of its sampling effort. We integrated the EDSM dataset with other existing surveys in the estuary and used an occupancy model to assess detection probability differences across gear types. We saw no large-scale differences in size selectivity, and while detection probability varied among gear types, cumulative detection probability for EDSM was comparable to other surveys due to the program’s use of replicate tows. Based on our occupancy model and sampling effort in the estuary during spring of 2017 and 2018, we highlighted under-sampled regions that saw improvements in monitoring coverage due to EDSM. Our analysis also revealed that each sampling method has its own benefits and constraints. Although the use of random sites with replicates as conducted by EDSM can provide more statistically robust abundance estimates relative to traditional methods, the use of fixed stations and simple methods such as beach seine may provide a more cost-effective way of monitoring salmon occurrence at certain regions of the estuary. Stronger inference on salmon abundance and distribution can be made by leveraging the strengths of each survey’s method. Careful consideration of these trade-offs and key monitoring objectives is crucial as the management agencies of the estuary continue to adapt and improve their monitoring programs.


Author(s):  
Nicole M. Aha ◽  
Peter B. Moyle ◽  
Nann A. Fangue ◽  
Andrew L. Rypel ◽  
John R. Durand

AbstractLoss of estuarine and coastal habitats worldwide has reduced nursery habitat and function for diverse fishes, including juvenile Chinook salmon (Oncorhynchus tshawytscha). Underutilized off-channel habitats such as flooded rice fields and managed ponds present opportunities for improving rearing conditions and increasing habitat diversity along migratory corridors. While experiments in rice fields have shown enhanced growth rates of juvenile fishes, managed ponds are less studied. To evaluate the potential of these ponds as a nursery habitat, juvenile Chinook salmon (~ 2.8 g, 63 mm FL) were reared in cages in four contrasting locations within Suisun Marsh, a large wetland in the San Francisco Estuary. The locations included a natural tidal slough, a leveed tidal slough, and the inlet and outlet of a tidally muted managed pond established for waterfowl hunting. Fish growth rates differed significantly among locations, with the fastest growth occurring near the outlet in the managed pond. High zooplankton biomass at the managed pond outlet was the best correlate of salmon growth. Water temperatures in the managed pond were also cooler and less variable compared to sloughs, reducing thermal stress. The stress of low dissolved oxygen concentrations within the managed pond was likely mediated by high concentrations of zooplankton and favorable temperatures. Our findings suggest that muted tidal habitats in the San Francisco Estuary and elsewhere could be managed to promote growth and survival of juvenile salmon and other native fishes.


Author(s):  
Ted Sommer ◽  
◽  
Francine Mejia ◽  
Matthew Nobriga ◽  
Frederick Feyrer ◽  
...  

Author(s):  
Andrew Jahn ◽  
William Kier

Combined water exports from Old River in the south end of California’s San Francisco Estuary (estuary) by state and federal pumping facilities entrain small fishes, including out-migrating juvenile salmon. Both export projects have fish salvage facilities that use behavioral barriers (louvers) in combination with screens to guide fish into collection areas from which they are trucked to release points in the western Delta. Sacramento River-origin Chinook Salmon are regularly taken in the projects’ fish salvage operations. Survival has been estimated within the boundaries of both intake structures, but not in Old River. Prevailing methods for estimating fish losses are based on studies of louver efficiency, near-field survival at the state facility, and assumed survival at the federal facility. The efficiency of the fish salvage operations is affected by several factors, including intake velocity, debris build-up on the louvers and trash racks, and by the omnipresence of predators in front of and within the fish guidance structures. Analysis of existing data suggests that under average conditions, juvenile salmon survive entrainment into the forebay of the state facility at a rate of less than 10%. There is no evidence for better survival at the federal facility. We found no data on predation outside of either the state’s forebay or the federal trash boom, structures which are separated by an approximately 2-km reach of Old River where predation on small fish is thought to be intense. We suggest an improvement to the existing loss estimation, and discuss some features of the studies needed to increase its accuracy and precision.


Author(s):  
Brian Mahardja ◽  
Lara Mitchell ◽  
Michael Beakes ◽  
Catherine Johnston ◽  
Cory Graham ◽  
...  

Monitoring is an essential component in ecosystem management, and leveraging existing data sources for multiple species of interest can be one effective way to enhance information for management agencies. Here, we analyzed juvenile Chinook Salmon (Oncorhynchus tshawytscha) bycatch data that has been collected by the recently established Enhanced Delta Smelt Monitoring program (EDSM), a survey designed to estimate the abundance and distribution of the San Francisco Estuary’s (estuary) endangered Delta Smelt (Hypomesus transpacificus). Two key aspects of the EDSM program distinguish it from other fish surveys in the estuary: a stratified random sampling design and the spatial scale of its sampling effort. We integrated the EDSM data set with other existing surveys in the estuary, and used an occupancy model to assess differences in the probability of detecting Delta Smelt across gear types. We saw no large-scale differences in size selectivity, and while detection probability varied among gear types, cumulative detection probability for EDSM was comparable to other surveys because of the program’s use of replicate tows. Based on our occupancy model and sampling effort in the estuary during spring of 2017 and 2018, we highlighted under-sampled regions that saw improvements in monitoring coverage from EDSM. Our analysis also revealed that each sampling method has its own benefits and constraints. Although the use of random sites with replicates, as conducted by EDSM, can provide more statistically robust abundance estimates relative to traditional methods, the use of fixed stations and simple methods such as beach seining may provide a more cost-effective way to monitor salmon occurrence in certain regions of the estuary. Leveraging the strengths of each survey’s method can enable stronger inferences on salmon abundance and distribution. Careful consideration of these trade-offs is crucial as the management agencies of the estuary continue to adapt and improve their monitoring programs.


Sign in / Sign up

Export Citation Format

Share Document