Evaluating Alternative Hierarchical Modelling Approaches for the Estimation of Salmonid Smolt Abundance

Author(s):  
Quinn Payton ◽  
Nicholas A. Som
2003 ◽  
Vol 1 (01) ◽  
pp. 441-445
Author(s):  
I. Zubia ◽  
◽  
S.K. Salman ◽  
X. Ostolaza ◽  
G. Tapia ◽  
...  

2018 ◽  
Author(s):  
Yiming Zhao ◽  
Huy van Nguyen ◽  
Louise Male ◽  
Philip Craven ◽  
Benjamin R. Buckley ◽  
...  

<div>Twelve 1,5-disubtituted and fourteen 5-substituted 1,2,3-triazole derivatives bearing diaryl or dialkyl phosphines at the 5-position were synthesised and used as ligands for palladium-catalysed Suzuki-Miyaura cross-coupling reactions. Bulky substrates were tested, and lead-like product formation was demonstrated. The online tool SambVca 2.0 was used to assess steric parameters of ligands and preliminary buried volume determination using XRD obtained data in a small number of cases proved to be informative. Two modelling approaches were compared for the determination of</div><div>the buried volume of ligands where XRD data was not available. An approach with imposed steric restrictions was found to be superior in leading to buried volume determinations that closely correlate with observed reaction conversions. The online tool LLAMA was used to determine lead-likeness of potential Suzuki-Miyaura cross-coupling products, from which ten of the most lead-like were successfully synthesised. Thus, confirming these readily accessible triazole-containing phosphines as highly suitable ligands for reaction screening and optimisation in drug discovery campaigns.</div>


1995 ◽  
Vol 31 (7) ◽  
pp. 107-115 ◽  
Author(s):  
Ole Mark ◽  
Cecilia Appelgren ◽  
Torben Larsen

A study has been carried out with the objectives of describing the effect of sediment deposits on the hydraulic capacity of sewer systems and to investigate the sediment transport in sewer systems. A result of the study is a mathematical model MOUSE ST which describes sediment transport in sewers. This paper discusses the applicability and the limitations of various modelling approaches and sediment transport formulations in MOUSE ST. Further, the paper presents a simple application of MOUSE ST to the Rya catchment in Gothenburg, Sweden.


2021 ◽  
Author(s):  
Amrie Singh ◽  
David Dawson ◽  
Mark Trigg ◽  
Nigel Wright

AbstractFlooding is an important global hazard that causes an average annual loss of over 40 billion USD and affects a population of over 250 million globally. The complex process of flooding depends on spatial and temporal factors such as weather patterns, topography, and geomorphology. In urban environments where the landscape is ever-changing, spatial factors such as ground cover, green spaces, and drainage systems have a significant impact. Understanding source areas that have a major impact on flooding is, therefore, crucial for strategic flood risk management (FRM). Although flood source area (FSA) identification is not a new concept, its application is only recently being applied in flood modelling research. Continuous improvements in the technology and methodology related to flood models have enabled this research to move beyond traditional methods, such that, in recent years, modelling projects have looked beyond affected areas and recognised the need to address flooding at its source, to study its influence on overall flood risk. These modelling approaches are emerging in the field of FRM and propose innovative methodologies for flood risk mitigation and design implementation; however, they are relatively under-examined. In this paper, we present a review of the modelling approaches currently used to identify FSAs, i.e. unit flood response (UFR) and adaptation-driven approaches (ADA). We highlight their potential for use in adaptive decision making and outline the key challenges for the adoption of such approaches in FRM practises.


Sign in / Sign up

Export Citation Format

Share Document