scholarly journals A review of modelling methodologies for flood source area (FSA) identification

2021 ◽  
Author(s):  
Amrie Singh ◽  
David Dawson ◽  
Mark Trigg ◽  
Nigel Wright

AbstractFlooding is an important global hazard that causes an average annual loss of over 40 billion USD and affects a population of over 250 million globally. The complex process of flooding depends on spatial and temporal factors such as weather patterns, topography, and geomorphology. In urban environments where the landscape is ever-changing, spatial factors such as ground cover, green spaces, and drainage systems have a significant impact. Understanding source areas that have a major impact on flooding is, therefore, crucial for strategic flood risk management (FRM). Although flood source area (FSA) identification is not a new concept, its application is only recently being applied in flood modelling research. Continuous improvements in the technology and methodology related to flood models have enabled this research to move beyond traditional methods, such that, in recent years, modelling projects have looked beyond affected areas and recognised the need to address flooding at its source, to study its influence on overall flood risk. These modelling approaches are emerging in the field of FRM and propose innovative methodologies for flood risk mitigation and design implementation; however, they are relatively under-examined. In this paper, we present a review of the modelling approaches currently used to identify FSAs, i.e. unit flood response (UFR) and adaptation-driven approaches (ADA). We highlight their potential for use in adaptive decision making and outline the key challenges for the adoption of such approaches in FRM practises.

2021 ◽  
Vol 292 ◽  
pp. 112743
Author(s):  
Elisabetta Strazzera ◽  
Rossella Atzori ◽  
Daniela Meleddu ◽  
Vania Statzu

2020 ◽  
Vol 11 ◽  
pp. 100080
Author(s):  
M.H. Barendrecht ◽  
N. Sairam ◽  
L. Cumiskey ◽  
A.D. Metin ◽  
F. Holz ◽  
...  

2021 ◽  
Author(s):  
Rebecca Alexandre ◽  
Iain Willis

<p>The re/insurance, banking and mortgage sectors play an essential role in facilitating economic stability. As climate change-related financial risks increase, there has long been a need for tools that contribute to the global industry’s current and future flood risk resiliency. Recognising this gap, JBA Risk Management has pioneered use of climate model data for rapidly deriving future flood risk metrics to support risk-reflective pricing strategies and mortgage analysis for Hong Kong.</p><p>JBA’s established method uses daily temporal resolution precipitation and surface air temperature Regional Climate Model (RCM) data from the Earth System Grid Federation’s CORDEX experiment. Historical and future period RCM data were processed for Representative Concentration Pathways (RCPs) 2.6 and 8.6, and time horizons 2046-2050 and 2070-2080 and used to develop fluvial and pluvial hydrological model change factors for Hong Kong. These change factors were applied to baseline fluvial and pluvial flood depths and extents, extracted from JBA’s high resolution 30m Hong Kong Flood Map. From these, potential changes in flood event frequency and severity for each RCP and time horizon combination were estimated.</p><p>The unique flood frequency and severity profiles for each flood type were then analysed with customised vulnerability functions, linking water depth to expected damage over time for residential and commercial building risks. This resulted in quantitative fluvial and pluvial flood risk metrics for Hong Kong.</p><p>Newly released, Hong Kong Climate Change Pricing Data is already in use by financial institutions. When combined with property total sum insured data, this dataset provides the annualised cost of flood damage for a range of future climate scenarios. For the first time, our industry has a tool to quantify baseline and future flood risk and set risk-reflective pricing for Hong Kong portfolios.</p><p>JBA’s method is adaptable for global use and underwriting tools are already available for the UK and Australia with the aim of improving future financial flood risk mitigation and management. This presentation will outline the method, provide a comparison of baseline and climate change flood impacts for Hong Kong and discuss the wider implications for our scientific and financial industries.</p>


2021 ◽  
Author(s):  
Roman Schotten ◽  
Daniel Bachmann

<p><span>In flood risk analysis it is a key principle to predetermine consequences of flooding to assets, people and infrastructures. Damages to critical infrastructures are not restricted to the flooded area. The effects of directly affected objects cascades to other infrastructures, which are not directly affected by a flood. Modelling critical infrastructure networks is one possible answer to the question ‘how to include indirect and direct impacts to critical infrastructures?’.</span></p><p>Critical infrastructures are connected in very complex networks. The modelling of those networks has been a basis for different purposes (Ouyang, 2014). Thus, it is a challenge to determine the right method to model a critical infrastructure network. For this example, a network-based and topology-based method will be applied (Pant et al., 2018). The basic model elements are points, connectors and polygons which are utilized to resemble the critical infrastructure network characteristics.</p><p>The objective of this model is to complement the state-of-the-art flood risk analysis with a quantitative analysis of critical infrastructure damages and disruptions for people and infrastructures. These results deliver an extended basis to differentiate the flood risk assessment and to derive measures for flood risk mitigation strategies. From a technical point of view, a critical infrastructure damage analysis will be integrated into the tool ProMaIDes (Bachmann, 2020), a free software for a risk-based evaluation of flood risk mitigation measures.</p><p>The data on critical infrastructure cascades and their potential linkages is scars but necessary for an actionable modelling. The CIrcle method from Deltares delivers a method for a workshop that has proven to deliver applicable datasets for identifying and connecting infrastructures on basis of cascading effects (de Bruijn et al., 2019). The data gained from CIrcle workshops will be one compound for the critical infrastructure network model.</p><p>Acknowledgment: This work is part of the BMBF-IKARIM funded project PARADes (Participatory assessment of flood related disaster prevention and development of an adapted coping system in Ghana).</p><p>Bachmann, D. (2020). ProMaIDeS - Knowledge Base. https://promaides.myjetbrains.com</p><p>de Bruijn, K. M., Maran, C., Zygnerski, M., Jurado, J., Burzel, A., Jeuken, C., & Obeysekera, J. (2019). Flood resilience of critical infrastructure: Approach and method applied to Fort Lauderdale, Florida. Water (Switzerland), 11(3). https://doi.org/10.3390/w11030517</p><p>Ouyang, M. (2014). Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering and System Safety, 121, 43–60. https://doi.org/10.1016/j.ress.2013.06.040</p><p>Pant, R., Thacker, S., Hall, J. W., Alderson, D., & Barr, S. (2018). Critical infrastructure impact assessment due to flood exposure. Journal of Flood Risk Management, 11(1), 22–33. https://doi.org/10.1111/jfr3.12288</p>


2021 ◽  
Vol 10 (1) ◽  
pp. 3473-3491
Author(s):  
TIKI Denis ◽  
◽  
BITOM Mamdem Lionelle ◽  
IBRAHIM Achille ◽  
SOUNYA Jean Boris ◽  
...  

In general, living close to a river is advantage, but there is always of flooding risk, that recurrence in recent decades provokes serious material damage and loss of life. Thus, in order to protect environmental health, economic viability and human activity zones of Mayo-Danay, a careful study of components of natural environment, mainly soil, has proved essential. Clearly, use of GIS in management of natural disasters is most relevant method, designed on integration, Multicriteria Analysis (MCA) and spatial data. Thus, Digital Elevation Model is obtained by manual digitization of contour lines, in order to define the large pedological sets on which wells have been opened, profiles described, soil samples taken and analyzed in laboratory. Main results reveal that soils are sandy to clayey, with neutral and basic pH (7 to 8), high CEC and low organic matter. While, quartz is predominant, associated with smectites, illites, feldspars and iron oxyhydroxides. Updated soil map shows five soil units (1) vertisols with hydromorphic characters (26%), (2) tropical ferruginous soils (32%), (3) less evolved hydromorphic soils (15%), (4) halomorphic vertic soils (9%), and (5) hydromorphic vertic soils (18%). It is an excellent tool for work and research, that responds to agronomic and development problems. It is therefore an excellent tool for work and research, which responds to agronomic and development problems. The multi-criteria spatial analysis establishes hazard and vulnerability, crossing of which gives of flood risk areas map, according to hazard level, very high (12%), high (16%), moderate (14%), low (30%) and very low (28%) risks. For this purpose, it emerges that rainfall is relatively low (700 mm/year), but falls very abruptly during short periods, at high intensity with flows exceeding the infiltration capacities. Morphology of low-slope "yayrés" (280 m) (2‰) is bordered by high landscape (500 to 1400 m) that prevent flow of many rivers that converge into plain. Sandy soils dominated by quartz favor fast rising in water table, while very clayey soils governed by 2/1 clayey (smectites) whose behavior induce waterproofing and intense surface runoff that generate flooding. Evidently, land use change leads to transformation of natural spaces into agricultural and urban environments, which makes soils more compact and impermeable, favorable to flooding. Keywords Soil; Flood risks; Mapping; Mayo-Danay Division; Spatial data DOI: https://doi.org/10.23953/cloud.ijarsg.501


Risk Analysis ◽  
2021 ◽  
Author(s):  
Yu Han ◽  
Liang Mao ◽  
Xuqi Chen ◽  
Wei Zhai ◽  
Zhong‐Ren Peng ◽  
...  

2017 ◽  
Vol 21 (1) ◽  
pp. 515-531 ◽  
Author(s):  
Chiara Arrighi ◽  
Hocine Oumeraci ◽  
Fabio Castelli

Abstract. People's safety is the first objective to be fulfilled by flood risk mitigation measures, and according to existing reports on the causes of casualties, most of the fatalities are due to inappropriate behaviour such as walking or driving in floodwaters. Currently available experimental data on people instability in floodwaters suffer from a large dispersion primarily depending on the large variability of the physical characteristics of the subjects. This paper introduces a dimensionless mobility parameter θP for people partly immersed in flood flows, which accounts for both flood and subject characteristics. The parameter θP is capable of identifying a unique threshold of instability depending on a Froude number, thus reducing the scatter of existing experimental data. Moreover, a three-dimensional (3-D) numerical model describing the detailed geometry of a human body and reproducing a selection of critical pairs of water depth and velocity is presented. The numerical results in terms of hydrodynamic forces and force coefficients are analysed and discussed. Both the mobility parameter θP and the numerical results hint at the crucial role of the Froude number and relative submergence as the most relevant dimensionless numbers to interpret the loss of stability. Finally, the mobility parameter θP is compared with an analogous dimensionless parameter for vehicles' instability in floodwaters, providing a new contribution to support flood risk management and educating people.


2020 ◽  
Vol 9 (12) ◽  
pp. 725
Author(s):  
Christos Tzioutzios ◽  
Aristeidis Kastridis

The potential of woodland and floodplain woodland plantations in a wide area, of high flood risk, along the Spey River (Scotland) is investigated, to mitigate the floods’ catastrophic impact. The spatial analysis required various datasets to be overlaid, to define the suitable sites for woodland and floodplain woodland establishment. These datasets that concern the topography, the physical and technical characteristics (existing woodland, road system, urban and rural areas, river system and open water areas, railway) and the protected sites of the study area were obtained and merged using Geographical Information System (GIS) techniques. The most suitable and unsuitable areas within the region were identified, using multi-criteria evaluation methods (Boolean approach). In total, 13 constraints were created by expressing true/false statements for each factor, and were combined together using spatial analysis tools. The results revealed the high potential of woodland and floodplain woodland plantations to prevent floods, with 59.2% of the total study area (177.5 km2) determined to be appropriate for such practices’ application. The River Dulnain tributary demonstrated the highest potential for floodplain woodland planting, followed by Rivers Avon and Fiddich, and the southwestern and northeastern Spey River parts. The methodology proposed is simple and provides rapid and accurate results at low cost, while the datasets can be easily accessed and are available in convenient type/format. This useful methodology for researchers and authorities could be applied successfully to similar watersheds, contributing significantly to flood risk mitigation and the enhancement of the flood-preventative measures’ planning efficiency.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 273 ◽  
Author(s):  
Fatemeh Fadia Maghsood ◽  
Hamidreza Moradi ◽  
Ali Reza Massah Bavani ◽  
Mostafa Panahi ◽  
Ronny Berndtsson ◽  
...  

This study assessed the impact of climate change on flood frequency and flood source area at basin scale considering Coupled Model Intercomparison Project phase 5 General Circulation Models (CMIP5 GCMs) under two Representative Concentration Pathways (RCP) scenarios (2.6 and 8.5). For this purpose, the Soil and Water Assessment Tool (SWAT) hydrological model was calibrated and validated for the Talar River Basin in northern Iran. Four empirical approaches including the Sangal, Fill–Steiner, Fuller, and Slope-based methods were used to estimate the Instantaneous Peak Flow (IPF) on a daily basis. The calibrated SWAT model was run under the two RCP scenarios using a combination of twenty GCMs from CMIP5 for the near future (2020–40). To assess the impact of climate change on flood frequency pattern and to quantify the contribution of each subbasin on the total discharge from the Talar River Basin, Flood Frequency Index (FFI) and Subbasin Flood Source Area Index (SFSAI) were used. Results revealed that the projected climate change will likely lead to an average discharge decrease in January, February, and March for both RCPs and an increase in September and October for RCP 8.5. The maximum and minimum temperature will likely increase for all months in the near future. The annual precipitation could increase by more than 20% in the near future. This is likely to lead to an increase of IPF. The results can help managers and policy makers to better define mitigation and adaptation strategies for basins in similar climates.


Sign in / Sign up

Export Citation Format

Share Document