scholarly journals Calibration and validation of a new elastoviscoplastic soil model

Author(s):  
Yixing Yuan ◽  
Andrew J. Whittle
Author(s):  
Sudipta Chakraborty ◽  
Ripon Hore ◽  
Ayaz Mahmud Shuvon ◽  
M. S. Mazhar ◽  
Mehedi A. Ansary

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1865
Author(s):  
Bala Bhavya Kausika ◽  
Wilfried G. J. H. M. van Sark

Geographic information system (GIS) based tools have become popular for solar photovoltaic (PV) potential estimations, especially in urban areas. There are readily available tools for the mapping and estimation of solar irradiation that give results with the click of a button. Although these tools capture the complexities of the urban environment, they often miss the more important atmospheric parameters that determine the irradiation and potential estimations. Therefore, validation of these models is necessary for accurate potential energy yield and capacity estimations. This paper demonstrates the calibration and validation of the solar radiation model developed by Fu and Rich, employed within ArcGIS, with a focus on the input atmospheric parameters, diffusivity and transmissivity for the Netherlands. In addition, factors affecting the model’s performance with respect to the resolution of the input data were studied. Data were calibrated using ground measurements from Royal Netherlands Meteorological Institute (KNMI) stations in the Netherlands and validated with the station data from Cabauw. The results show that the default model values of diffusivity and transmissivity lead to substantial underestimation or overestimation of solar insolation. In addition, this paper also shows that calibration can be performed at different time scales depending on the purpose and spatial resolution of the input data.


2021 ◽  
Vol 13 (2) ◽  
pp. 257 ◽  
Author(s):  
Shaun R. Levick ◽  
Tim Whiteside ◽  
David A. Loewensteiner ◽  
Mitchel Rudge ◽  
Renee Bartolo

Savanna ecosystems are challenging to map and monitor as their vegetation is highly dynamic in space and time. Understanding the structural diversity and biomass distribution of savanna vegetation requires high-resolution measurements over large areas and at regular time intervals. These requirements cannot currently be met through field-based inventories nor spaceborne satellite remote sensing alone. UAV-based remote sensing offers potential as an intermediate scaling tool, providing acquisition flexibility and cost-effectiveness. Yet despite the increased availability of lightweight LiDAR payloads, the suitability of UAV-based LiDAR for mapping and monitoring savanna 3D vegetation structure is not well established. We mapped a 1 ha savanna plot with terrestrial-, mobile- and UAV-based laser scanning (TLS, MLS, and ULS), in conjunction with a traditional field-based inventory (n = 572 stems > 0.03 m). We treated the TLS dataset as the gold standard against which we evaluated the degree of complementarity and divergence of structural metrics from MLS and ULS. Sensitivity analysis showed that MLS and ULS canopy height models (CHMs) did not differ significantly from TLS-derived models at spatial resolutions greater than 2 m and 4 m respectively. Statistical comparison of the resulting point clouds showed minor over- and under-estimation of woody canopy cover by MLS and ULS, respectively. Individual stem locations and DBH measurements from the field inventory were well replicated by the TLS survey (R2 = 0.89, RMSE = 0.024 m), which estimated above-ground woody biomass to be 7% greater than field-inventory estimates (44.21 Mg ha−1 vs 41.08 Mg ha−1). Stem DBH could not be reliably estimated directly from the MLS or ULS, nor indirectly through allometric scaling with crown attributes (R2 = 0.36, RMSE = 0.075 m). MLS and ULS show strong potential for providing rapid and larger area capture of savanna vegetation structure at resolutions suitable for many ecological investigations; however, our results underscore the necessity of nesting TLS sampling within these surveys to quantify uncertainty. Complementing large area MLS and ULS surveys with TLS sampling will expand our options for the calibration and validation of multiple spaceborne LiDAR, SAR, and optical missions.


Sign in / Sign up

Export Citation Format

Share Document