scholarly journals Caffeine alters resting‐state functional connectivity measured by blood oxygenation level‐dependent MRI

2014 ◽  
Vol 27 (4) ◽  
pp. 444-452 ◽  
Author(s):  
Wen‐Chau Wu ◽  
Shu‐Hua Lien ◽  
Jia‐Horng Chang ◽  
Shun‐Chung Yang
2016 ◽  
Vol 37 (7) ◽  
pp. 2526-2538 ◽  
Author(s):  
Hesamoddin Jahanian ◽  
Thomas Christen ◽  
Michael E Moseley ◽  
Nicholas M Pajewski ◽  
Clinton B Wright ◽  
...  

Measurement of the ability of blood vessels to dilate and constrict, known as vascular reactivity, is often performed with breath-holding tasks that transiently raise arterial blood carbon dioxide (PaCO2) levels. However, following the proper commands for a breath-holding experiment may be difficult or impossible for many patients. In this study, we evaluated two approaches for obtaining vascular reactivity information using blood oxygenation level-dependent signal fluctuations obtained from resting-state functional magnetic resonance imaging data: physiological fluctuation regression and coefficient of variation of the resting-state functional magnetic resonance imaging signal. We studied a cohort of 28 older adults (69 ± 7 years) and found that six of them (21%) could not perform the breath-holding protocol, based on an objective comparison with an idealized respiratory waveform. In the subjects that could comply, we found a strong linear correlation between data extracted from spontaneous resting-state functional magnetic resonance imaging signal fluctuations and the blood oxygenation level-dependent percentage signal change during breath-holding challenge ( R2 = 0.57 and 0.61 for resting-state physiological fluctuation regression and resting-state coefficient of variation methods, respectively). This technique may eliminate the need for subject cooperation, thus allowing the evaluation of vascular reactivity in a wider range of clinical and research conditions in which it may otherwise be impractical.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Robert L Barry ◽  
Seth A Smith ◽  
Adrienne N Dula ◽  
John C Gore

Functional magnetic resonance imaging using blood oxygenation level dependent (BOLD) contrast is well established as one of the most powerful methods for mapping human brain function. Numerous studies have measured how low-frequency BOLD signal fluctuations from the brain are correlated between voxels in a resting state, and have exploited these signals to infer functional connectivity within specific neural circuits. However, to date there have been no previous substantiated reports of resting state correlations in the spinal cord. In a cohort of healthy volunteers, we observed robust functional connectivity between left and right ventral (motor) horns, and between left and right dorsal (sensory) horns. Our results demonstrate that low-frequency BOLD fluctuations are inherent in the spinal cord as well as the brain, and by analogy to cortical circuits, we hypothesize that these correlations may offer insight into the execution and maintenance of sensory and motor functions both locally and within the cerebrum.


2020 ◽  
Vol 41 (8) ◽  
pp. 2014-2027 ◽  
Author(s):  
Maria Guidi ◽  
Laurentius Huber ◽  
Leonie Lampe ◽  
Alberto Merola ◽  
Kristin Ihle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document