A non-circular arc roll force model for gold rolling

1978 ◽  
Vol 12 (4) ◽  
pp. 643-663 ◽  
Author(s):  
M. J. Grimble ◽  
M. A. Fuller ◽  
G. F. Bryant
Keyword(s):  
1980 ◽  
Vol 102 (2) ◽  
pp. 118-122 ◽  
Author(s):  
A. A. Desrochers ◽  
G. N. Saridis

This paper presents roll force control methods to be used with the predictive force setup model of the finishing stands in a hot steel rolling mill. Current mill practices achieve a desired strip gauge by using a predictive force model to setup the roll gaps on the finishing stands. At any time before the steel enters the first finishing stand a human operator may modify the roll gap settings if it is felt that under the present conditions the force predicted by the setup model is going to be unacceptable. In this paper, the decision process of the operator is modelled by pattern recognition methods to obtain this extra degree of feedforward control. In addition, feedback control is provided from one steel run to the next by an adaptive controller which uses a linear reinforcement learning scheme to adjust its parameters. Results are presented from actual mill data.


Author(s):  
A E Dixon ◽  
W Y D Yuen

A combined analytical/numerical solution method is developed to solve the equations that describe stresses in the plastic deformation of metal strip during rolling together with the resultant roll flattening. This gives a model that is more robust and computationally faster for the same accuracy than standard numerical schemes. Initially, the model assumes the elastically deformed rolls to be approximated by a circular arc profile when in contact with the strip, but it is later extended to calculate the deformed roll profile from the pressure profile through the roll gap. Both versions are suitable for on-line use in predicting the necessary roll force for the rolling of metal strip to a given thickness reduction.


2014 ◽  
Vol 926-930 ◽  
pp. 3705-3708
Author(s):  
Geng Sheng Ma ◽  
Fang Chen Yin ◽  
Zhu Wen Yan ◽  
He Nan Bu ◽  
Wen Peng ◽  
...  

The accuracy of roll force model and the rationality of roll fore adaptive model play a key role in obtaining the thickness of strip with high precision. The roll force model has been established. It includes the elastic flattened roller model and deformation resistance model considering the chemical composition of strip. A deformation resistance-based fitting curve is proposed in rolling force adaption, it can be inherited to any other thick range class. Application results show that the rolling force model and its adaptation are with high prediction accuracy and it has improved the strip thickness accuracy.


2010 ◽  
pp. 50-56
Author(s):  
Pablo R. Rubiolo ◽  
Guy Chaigne ◽  
Pierre Peturand ◽  
Jérôme Bigot ◽  
Jean-François Desseignes ◽  
...  

2020 ◽  
Vol 110 (11-12) ◽  
pp. 758-762
Author(s):  
Daniel Gauder ◽  
Michael Biehler ◽  
Benedict Stampfer ◽  
Benjamin Häfner ◽  
Volker Schulze ◽  
...  

Das Forschungsprojekt „Prozessintegrierte Softsensorik zur Oberflächenkonditionierung beim Außenlängsdrehen von 42CrMo4“ widmet sich der Entstehung und der In-process-Erfassung von industriell relevanten Randschichtzuständen. Im Speziellen werden sogenannte White Layer und Eigenspannungszustände untersucht. Durch die modulare Verknüpfung von zerstörungsfreier Prüftechnik, Simulationsergebnissen und Prozesswissen mittels Datenfusion wird ein Softsensor erforscht. Dieser soll im Rahmen einer adaptiven Regelung des Drehprozesses eingesetzt werden und eine gezielte Einstellung von vorteilhaften Randschichtzuständen erlauben. The research project „Process-integrated soft sensor technology for surface conditioning during external longitudinal turning of 42CrMo4“ is dedicated to the formation and in-process-detection of surface layers with industrial relevance. In particular, so-called white layers and residual stresses are investigated. A soft sensor is being researched through the modular combination of non-destructive testing technology and process knowledge by means of data fusion. This is to be used in the context of an adaptive control of the turning process in order to adjust beneficial surface states.


2020 ◽  
Vol 121 ◽  
pp. 42-53 ◽  
Author(s):  
I.M. Sticco ◽  
G.A. Frank ◽  
F.E. Cornes ◽  
C.O. Dorso

Sign in / Sign up

Export Citation Format

Share Document