A stress-return algorithm for nonlocal constitutive models of softening materials

2009 ◽  
Vol 82 (5) ◽  
pp. 637-670 ◽  
Author(s):  
Giang D. Nguyen ◽  
Itai Einav
Author(s):  
Andrey Brezolin ◽  
Tiago dos Santos ◽  
Pedro Rosa ◽  
Evandro Paese ◽  
Martin Geier ◽  
...  

1994 ◽  
Vol 267 (2) ◽  
pp. H853-H863 ◽  
Author(s):  
L. L. Creswell ◽  
M. J. Moulton ◽  
S. G. Wyers ◽  
J. S. Pirolo ◽  
D. S. Fishman ◽  
...  

A new experimental method for the evaluation of myocardial constitutive models combines magnetic resonance (MR) radiofrequency (RF) tissue-tagging techniques with iterative two-dimensional (2-D) nonlinear finite element (FE) analysis. For demonstration, a nonlinear isotropic constitutive model for passive diastolic expansion in the in vivo canine heart is evaluated. A 2-D early diastolic FE mesh was constructed with loading parameters for the ventricular chambers taken from mean early diastolic-to-late diastolic pressure changes measured during MR imaging. FE solution was performed for regional, intramyocardial ventricular wall strains using small-strain, small-displacement theory. Corresponding regional ventricular wall strains were computed independently using MR images that incorporated RF tissue tagging. Two unknown parameters were determined for an exponential strain energy function that maximized agreement between observed (from MR) and predicted (from FE analysis) regional wall strains. Extension of this methodology will provide a framework in which to evaluate the quality of myocardial constitutive models of arbitrary complexity on a regional basis.


2021 ◽  
Vol 276 ◽  
pp. 122175
Author(s):  
Dafu Wang ◽  
Yunsheng Zhang ◽  
Jia Xiao ◽  
Tingjie Huang ◽  
Meng Wu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 700
Author(s):  
Maria Concetta Oddo ◽  
Giovanni Minafò ◽  
Lidia La Mendola

In recent years, the scientific community has focused its interest on innovative inorganic matrix composite materials, namely TRM (Textile Reinforced Mortar). This class of materials satisfies the need of retrofitting existing masonry buildings, by keeping the compatibility with the substrate. Different recent studies were addressed to improve the knowledge on their mechanical behaviour and some theoretical models were proposed for predicting the tensile response of TRM strips. However, this task is complex due to the heterogeneity of the constituent materials and the stress transfer mechanism developed between matrix and fabric through the interface in the cracked stage. This paper presents a state-of-the-art review on the existing constitutive models for the tensile behavior of TRM composites. Literature experimental results of tensile tests on TRM coupons are presented and compared with the most relevant analytical models proposed until now. Finally, a new experimental study is presented and its results are used to further verify the reliability of the literature expressions.


Sign in / Sign up

Export Citation Format

Share Document