Modeling and simulation of three-dimensional planar contraction flow of viscoelastic fluids with PTT, Giesekus and FENE-P constitutive models

2012 ◽  
Vol 218 (17) ◽  
pp. 8429-8443 ◽  
Author(s):  
Yue Mu ◽  
Guoqun Zhao ◽  
Xianghong Wu ◽  
Jiqiang Zhai
Author(s):  
T. D. Marusich ◽  
S. Usui ◽  
R. Aphale ◽  
N. Saini ◽  
R. Li ◽  
...  

The three dimensional (3D) finite element modeling (FEM) and experimental validation of drilling are presented. The Third Wave AdvantEdge machining simulation software is applied for the FEM. It includes fully adaptive unstructured mesh generation, thermo-mechanically coupling, deformable tool-chip-workpiece contact, interfacial heat transfer across the tool-chip boundary, and constitutive models appropriate for process conditions and finite deformation analyses. The workpiece is modeled with a predrilled cone-shape blind hole to enable the early full-engagement of the whole drill point region to reduce the simulation time. Drilling experiments are conducted on the Ti-6Al-4V using a twist drill geometry. The calculated cutting force and torque are compared with the results of experiments with good agreement. Effects of process parameters on the stress and temperature distributions of the drill and workpiece are investigated in detail using the FEM.


Author(s):  
David M. Pierce ◽  
Thomas E. Fastl ◽  
Hannah Weisbecker ◽  
Gerhard A. Holzapfel ◽  
Borja Rodriguez-Vila ◽  
...  

Through progress in medical imaging, image analysis and finite element (FE) meshing tools it is now possible to extract patient-specific geometries from medical images of, e.g., abdominal aortic aneurysms (AAAs), and thus to study clinically relevant problems via FE simulations. Medical imaging is most often performed in vivo, and hence the reconstructed model geometry in the problem of interest will represent the in vivo state, e.g., the AAA at physiological blood pressure. However, classical continuum mechanics and FE methods assume that constitutive models and the corresponding simulations start from an unloaded, stress-free reference condition.


Sign in / Sign up

Export Citation Format

Share Document