A new higher-order accurate numerical method for solving heat conduction in a double-layered film with the neumann boundary condition

2014 ◽  
Vol 30 (4) ◽  
pp. 1291-1314 ◽  
Author(s):  
Zhi-Zhong Sun ◽  
Weizhong Dai
2013 ◽  
Vol 17 (3) ◽  
pp. 643-650 ◽  
Author(s):  
Edyta Hetmaniok ◽  
Iwona Nowak ◽  
Damian Slota ◽  
Roman Witula ◽  
Adam Zielonka

In the paper a solution of the inverse heat conduction problem with the Neumann boundary condition is presented. For finding this solution the homotopy perturbation method is applied. Investigated problem consists in calculation of the temperature distribution in considered domain, as well as in reconstruction of the functions describing the temperature and the heat flux on the boundary, in case when the temperature measurements in some points of the domain are known. An example confirming usefulness of the homotopy perturbation method for solving problems of this kind are also included.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Agil K. Khanmamedov ◽  
Nigar F. Gafarova

AbstractAn anharmonic oscillator {T(q)=-\frac{d^{2}}{dx^{2}}+x^{2}+q(x)} on the half-axis {0\leq x<\infty} with the Neumann boundary condition is considered. By means of transformation operators, the direct and inverse spectral problems are studied. We obtain the main integral equations of the inverse problem and prove that the main equation is uniquely solvable. An effective algorithm for reconstruction of perturbed potential is indicated.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Bo Fang ◽  
Yan Chai

We investigate an initial-boundary value problem for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition. We establish, respectively, the conditions on nonlinearity to guarantee thatu(x,t)exists globally or blows up at some finite timet*. Moreover, an upper bound fort*is derived. Under somewhat more restrictive conditions, a lower bound fort*is also obtained.


Sign in / Sign up

Export Citation Format

Share Document