Cross-experiences of ethnic schools in Italy and the United States (Tri-state Area) during covid pandemic - challenges, strategies and problems.

2021 ◽  
Author(s):  
Natalia Maksymowicz Mroz
1994 ◽  
Vol 4 (4) ◽  
pp. 372-377 ◽  
Author(s):  
Robert C. Hansen ◽  
Kenneth D. Cochran ◽  
Harold M. Keener ◽  
Edward M. Croom

A natural product known as taxol has been approved by the FDA for treatment of ovarian and breast cancers. In addition, preliminary clinical studies have shown encouraging results when using taxol to treat melanomas, lung, head, and neck cancers. Ornamental yews have been identified as a potential renewable source of taxol and related taxanes. Commercial nurseries were surveyed during Summer and Fall 1991 as a basis for estimating populations of Taxus cultivars currently growing in the United States. Clippings of selected cultivars were sampled from nursery fields in Ohio and Michigan to estimate expected clippings yields as a function of cultivar and cultivar age. More than 30 million Taxus plants were reported to be grown by the 19 major nurseries that responded to the survey. About 88% of all Taxus plants reported in the survey were grown in the three-state area of Ohio, Michigan, and Pennsylvania. Taxus × media `Densiformis', `Hicksii', and `Brownii' were found to be grown by nearly all nurseries in the survey; more than half grew T. × media `Wardii' and T. cuspidata `Capitata', while other well-known cultivars seem to have been specialties of one or two nurseries. Annual clippings yields on a dry-weight basis (db) ranged from ≈20 g/plant to 140 g/plant. Expected yields were found to be very dependent upon plant age and cultivar. Taxus × media `Hicksii' appeared to be the most ideal ornamental yew that could provide a renewable source of taxol because of immediate availability and potential for mechanical harvesting of upright clippings. An estimated 3000 to 4000 ovarian cancer patients could be treated annually with the taxol currently available for extraction from T. × media `Hicksii' clippings.


Author(s):  
A. Hakam ◽  
J.T. Gau ◽  
M.L. Grove ◽  
B.A. Evans ◽  
M. Shuman ◽  
...  

Prostate adenocarcinoma is the most common malignant tumor of men in the United States and is the third leading cause of death in men. Despite attempts at early detection, there will be 244,000 new cases and 44,000 deaths from the disease in the United States in 1995. Therapeutic progress against this disease is hindered by an incomplete understanding of prostate epithelial cell biology, the availability of human tissues for in vitro experimentation, slow dissemination of information between prostate cancer research teams and the increasing pressure to “ stretch” research dollars at the same time staff reductions are occurring.To meet these challenges, we have used the correlative microscopy (CM) and client/server (C/S) computing to increase productivity while decreasing costs. Critical elements of our program are as follows:1) Establishing the Western Pennsylvania Genitourinary (GU) Tissue Bank which includes >100 prostates from patients with prostate adenocarcinoma as well as >20 normal prostates from transplant organ donors.


Author(s):  
Vinod K. Berry ◽  
Xiao Zhang

In recent years it became apparent that we needed to improve productivity and efficiency in the Microscopy Laboratories in GE Plastics. It was realized that digital image acquisition, archiving, processing, analysis, and transmission over a network would be the best way to achieve this goal. Also, the capabilities of quantitative image analysis, image transmission etc. available with this approach would help us to increase our efficiency. Although the advantages of digital image acquisition, processing, archiving, etc. have been described and are being practiced in many SEM, laboratories, they have not been generally applied in microscopy laboratories (TEM, Optical, SEM and others) and impact on increased productivity has not been yet exploited as well.In order to attain our objective we have acquired a SEMICAPS imaging workstation for each of the GE Plastic sites in the United States. We have integrated the workstation with the microscopes and their peripherals as shown in Figure 1.


2001 ◽  
Vol 15 (01) ◽  
pp. 53-87 ◽  
Author(s):  
Andrew Rehfeld

Every ten years, the United States “constructs” itself politically. On a decennial basis, U.S. Congressional districts are quite literally drawn, physically constructing political representation in the House of Representatives on the basis of where one lives. Why does the United States do it this way? What justifies domicile as the sole criteria of constituency construction? These are the questions raised in this article. Contrary to many contemporary understandings of representation at the founding, I argue that there were no principled reasons for using domicile as the method of organizing for political representation. Even in 1787, the Congressional district was expected to be far too large to map onto existing communities of interest. Instead, territory should be understood as forming a habit of mind for the founders, even while it was necessary to achieve other democratic aims of representative government.


Sign in / Sign up

Export Citation Format

Share Document