scholarly journals Optimization of time‐varying feedback controller parameters for freeway networks

Author(s):  
Cecilia Pasquale ◽  
Simona Sacone ◽  
Silvia Siri
Author(s):  
Qinghui Du

The problem of adaptive state-feedback stabilization of stochastic nonholonomic systems with an unknown time-varying delay and perturbations is studied in this paper. Without imposing any assumptions on the time-varying delay, an adaptive state-feedback controller is skillfully designed by using the input-state scaling technique and an adaptive backstepping control approach. Then, by adopting the switching strategy to eliminate the phenomenon of uncontrollability, the proposed adaptive state-feedback controller can guarantee that the closed-loop system has an almost surely unique solution for any initial state, and the equilibrium of interest is globally asymptotically stable in probability. Finally, the simulation example shows the effectiveness of the proposed scheme.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Yao-Wen Tsai

This study proposes a novel variable structure control (VSC) for the mismatched uncertain systems with unknown time-varying delay. The novel VSC includes the finite-time convergence sliding mode, invariance property, asymptotic stability, and measured output only. A necessary and sufficient condition guaranteeing the existence of sliding surface is given. A novel lemma is established to deal with the control design problem for a wider class of time-delay systems. A suitable reduced-order observer (ROO) is constructed to estimate unmeasured state variables of the systems. A novel finite-time output feedback controller (FTOFC) is investigated, which is based on the ROO tool and the Moore-Penrose inverse technique. Moreover, with the help of this lemma and the proposed FTOFC, restrictions on most existing works are also eliminated. In addition, an asymptotic stability analysis is implemented by means of the feasibility of the linear matrix inequalities (LMIs) and given desirable sliding mode dynamics. Finally, a MATLAB simulation result on a numerical example is performed to show the effectiveness and advantage of the proposed method.


Author(s):  
Jinsen Zhuang ◽  
Yan Zhou ◽  
Yonghui Xia

This paper concerns the impact of stochastic perturbations on the intra-layer synchronization of the duplex networks. A duplex network contains two layers ([1,2]). Different from the previous works, environmental noise is introduced into the dynamical system of the duplex network. We incorporate both the inter-layer delay and the intra-layer delay into the dynamical system. Both of the delays are time-varying. However, the paper [1] only considered the intra-layer delays and they are assumed as the constants. While the paper [2] did not consider the inter-layer delay or intra-layer delay. When the system does not achieve automatic intra-layer synchronization, we introduce two controllers: one is the state-feedback controller, the other is the adaptive state-feedback controller. Interestingly, we find that the intra-layer synchronization will achieve automatically if the inter-layer coupling strength $c_1$ is large enough when the time-varying inter-layer delays are absent. Finally, some interesting simulation results are obtained for the Chua-Chua chaotic system with application of our theoretic results, which show the feasibility effectiveness of our control schemes.


Sign in / Sign up

Export Citation Format

Share Document