A flexible two‐surface gradient‐extended damage‐plasticity model for large deformations with nonlinear kinematic hardening

PAMM ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Tim Brepols ◽  
Stephan Wulfinghoff ◽  
Stefanie Reese
Author(s):  
Seiichiro Tsutsumi

In order to simulate mechanical fatigue phenomena under macroscopically elastic condition, the plastic stretching within a yield surface has to be described, whilst the plastic strain is induced remarkably as the stress approaches the dominant yielding state. In this study, a phenomenological plasticity model, proposed for the description of the cyclic loading behavior observed for typical carbon steels during the high-cycle fatigue subjected to stresses lower than the yield stress, is applied for the prediction of fatigue initiation life. The model is formulated based on the unconventional plasticity model and is applied for materials obeying isotropic and kinematic hardening law. The mechanical responses under cyclic loading conditions are examined briefly. Finally, the initiation life of fatigue cracking is discussed based on the proposed model with the damage counting parameter.


2004 ◽  
Vol 120 ◽  
pp. 177-183
Author(s):  
M. Coret ◽  
A. Combescure

This article deals with the multiphasic, anisothermal behaviour of 16MND5 steel under complex loading. We are focusing more specifically on the modelization of transformation plasticity induced by proportional or nonproportional biaxial loading during the bainitic transformation. A first part recalls Leblond's transformation plasticity model with or without hardening. We also describe the experimental setup used to get transformation plasticity tests under tension-torsion loadings. The last part deals with the TrIP models (with or without hardening) identification and their use for the nonproportional tests simulation.


2004 ◽  
Vol 126 (4) ◽  
pp. 339-352 ◽  
Author(s):  
C. L. Xie ◽  
S. Ghosh ◽  
M. Groeber

High strength low alloy (HSLA) steels, used in a wide variety of applications as structural components are subjected to cyclic loading during their service lives. Understanding the cyclic deformation behavior of HSLA steels is of importance, since it affects the fatigue life of components. This paper combines experiments with finite element based simulations to develop a crystal plasticity model for prediction of the cyclic deformation behavior of HSLA-50 steels. The experiments involve orientation imaging microscopy (OIM) for microstructural characterization and mechanical testing under uniaxial and stress–strain controlled cyclic loading. The computational models incorporate crystallographic orientation distributions from the OIM data. The crystal plasticity model for bcc materials uses a thermally activated energy theory for plastic flow, self and latent hardening, kinematic hardening, as well as yield point phenomena. Material parameters are calibrated from experiments using a genetic algorithm based minimization process. The computational model is validated with experiments on stress and strain controlled cyclic loading. The effect of grain orientation distributions and overall loading conditions on the evolution of microstructural stresses and strains are investigated.


2014 ◽  
Vol 1025-1026 ◽  
pp. 50-55
Author(s):  
Abdul Latif Mohd Tobi ◽  
M.Y. Ali ◽  
M.H. Zainulabidin ◽  
A.A. Saad

This paper presents finite element modelling of fretting wear under partial slip conditions using combined isotropic-kinematic hardening plasticity model with the emphasized to investigate the cyclic-plasticity behaviour predicted under fretting condition. The model is based on two-dimensional (2D) cylinder-on-flat contact configuration of titanium alloy, Ti-6Al-4V. A number of wear profiles at specific number of wear cycle (6000th, 60000th, 150000th and 300000th) are simulated. Contact pressure, tangential stress, shear stress, equivalent plastic strain, tangential plastic strain and also shear plastic strain are gathered and analysed. It is found that the plastic strain response of the combined isotropic-kinematic hardening plasticity model is slightly higher compare to linear kinematic hardening plasticity model [1].


Author(s):  
Kerry S Havner

A set of geometrically based FCC crystal slip-systems hardening inequalities is analytically investigated in (110) channel die compression for all lateral constraint directions between and , following previous analyses of the other two distinct orientation ranges in (110) compression. With all critical slip systems active, it is proved that these inequalities uniquely predict initial lattice stability and finite crystal shearing only in the horizontal channel plane, consistent with experiments for this range of orientations. (The earlier analyses had predicted load-axis stability in both orientation ranges, and lattice stability in one, also commonly found experimentally.) Moreover, it is established that the lateral constraint stress predicted by the hardening inequalities will be less than that given by classic Taylor hardening as this stress evolves with deformation. It is further shown, taking into account experimental stress–strain curves and latent hardening experiments for aluminium and copper, that lattice stability generally can be expected to very large deformations, except perhaps for lateral constraint orientations near the end of the range, which result is consistent with experiment. In appendix A, the possibilities of solutions with a critical slip system inactive are investigated, and predictions of a power law rate-dependent plasticity model are analysed for comparison with the results based on the hardening inequalities.


Sign in / Sign up

Export Citation Format

Share Document