Modelling of Fretting Wear under Partial Slip Conditions Using Combined Isotropic-Kinematic Hardening Plasticity Model

2014 ◽  
Vol 1025-1026 ◽  
pp. 50-55
Author(s):  
Abdul Latif Mohd Tobi ◽  
M.Y. Ali ◽  
M.H. Zainulabidin ◽  
A.A. Saad

This paper presents finite element modelling of fretting wear under partial slip conditions using combined isotropic-kinematic hardening plasticity model with the emphasized to investigate the cyclic-plasticity behaviour predicted under fretting condition. The model is based on two-dimensional (2D) cylinder-on-flat contact configuration of titanium alloy, Ti-6Al-4V. A number of wear profiles at specific number of wear cycle (6000th, 60000th, 150000th and 300000th) are simulated. Contact pressure, tangential stress, shear stress, equivalent plastic strain, tangential plastic strain and also shear plastic strain are gathered and analysed. It is found that the plastic strain response of the combined isotropic-kinematic hardening plasticity model is slightly higher compare to linear kinematic hardening plasticity model [1].

2014 ◽  
Vol 699 ◽  
pp. 378-383
Author(s):  
M.A. Harimon ◽  
Abdul Latif Mohd Tobi ◽  
Abdullah Aziz Saad ◽  
M.N. Che Seman

The fretting wear behavior of Ti-6Al-4V is studied with the focus on cyclic plasticity effect under partial slip condition. The analysis is simulated using finite element based method with a new worn surface profile model represent a given number of cycles using a cylinder-on-flat geometry. The effect of surface modification on the stresses and plastic strain distribution is studied. As the profiles become deeper and wider, the contact pressure and shear stress increase at the stick zone. Due to this increment, the accumulation of plastic strain will become more significant. This may lead to material’s ductility exhaustion that could initiate the nucleation of crack. Plastic deformation is predicted to occur in the 6000th cycle model and onwards. Overall the relationship of fretting wear and plasticity has been defined qualitatively.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1840
Author(s):  
Shengjie Wang ◽  
Magd Abdel Wahab

Fretting wear is a common phenomenon that happens between contact parts when there is an oscillatory relative movement. To investigate wear characteristics history in the fretting process, the finite element method (FEM) is commonly applied to simulate the fretting by considering the wear in the model. In most literature publications, the wear coefficient is considered as a constant, which is not a real case based on the experimental results. To consider the variation of wear coefficient, a double-linear model is applied in this paper, and the tribologically transformed structure (TTS) phase is considered in the study of the wear coefficient variation model. By using these models for variable wear coefficient for both flat and cylinder, the difference of wear characteristics, plastic strain, and stress between variable wear coefficient model (VWCM) and constant wear coefficient model (CWCM) are analyzed. The results show that the variable wear coefficient has no significant effect on the wear characteristic at the end of the process in the gross sliding regime. However, in the partial slip regime, the effect of variable wear coefficient on wear characteristics is significant. Due to the difference in contact geometry in the fretting process between VWCM and CWCM, the tangential and shear stress and equivalent plastic strain also show differences during the fretting process.


2016 ◽  
Vol 853 ◽  
pp. 256-261
Author(s):  
Wei Zhang ◽  
Xiao Wei Wang ◽  
Jian Ming Gong ◽  
Yong Jiang ◽  
Xin Huang

This paper presents a study on thermal-mechanical fatigue (TMF) behavior of P92 T-piece pipe at the most critical working fluctuations. Pressure and temperature in out-of-phase (OP) and in-phase (IP) conditions were both taken into account. Cyclic plasticity model considering the effect of temperature were used, in which both effects of kinematic hardening and isotropic hardening were included. All of the parameters used in the simulation were obtained from high temperature low cycle fatigue tests (HTLCF). These parameters have been validated through the comparison of experiment data with the simulated data. Then, in order to investigate the effect of OP and IP loadings, thermal-mechanical fatigue finite element model (FEM) of P92 T-piece pipe was also developed. Simulated results reveal that at the most critical working fluctuations, the most dangerous position occurs at the region where the inner surface of horizontal pipe and branch pipe crossed for both IP and OP loadings. With the cycle increases, the equivalent plastic strain is increasing. The peak hoop stress and equivalent plastic strain at IP loading are higher than OP which indicates that IP loadings are more dangerous than OP loadings.


2006 ◽  
Vol 321-323 ◽  
pp. 1495-1498 ◽  
Author(s):  
Dong Hyung Lee ◽  
Seok Jin Kwon ◽  
Chan Woo Lee ◽  
Jae Boong Choi ◽  
Young Jin Kim

In this paper the fretting wear of press-fitted specimens under partial slip conditions was simulated using finite element method and numerical analysis based on Archard's equation. An elasto-plastic analysis of contact stresses in a press-fitted shaft in contact with a boss was conducted with finite element method and the amount of microslip and contact pressure due to bending load was estimated. The predicted wear profile of press-fitted specimens at the contact edge was compared with the experimental results. It is found that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact stresses and strain are redistributed.


Author(s):  
Seiichiro Tsutsumi

In order to simulate mechanical fatigue phenomena under macroscopically elastic condition, the plastic stretching within a yield surface has to be described, whilst the plastic strain is induced remarkably as the stress approaches the dominant yielding state. In this study, a phenomenological plasticity model, proposed for the description of the cyclic loading behavior observed for typical carbon steels during the high-cycle fatigue subjected to stresses lower than the yield stress, is applied for the prediction of fatigue initiation life. The model is formulated based on the unconventional plasticity model and is applied for materials obeying isotropic and kinematic hardening law. The mechanical responses under cyclic loading conditions are examined briefly. Finally, the initiation life of fatigue cracking is discussed based on the proposed model with the damage counting parameter.


1985 ◽  
Vol 52 (2) ◽  
pp. 298-302 ◽  
Author(s):  
D. L. McDowell

A two surface stress space model is introduced with internal state variable repositories for fading memory of maximum plastic strain range and non-proportionality of loading. Evolution equations for isotropic hardening variables are prescribed as a function of these internal variables and accumulated plastic strain, and reflect dislocation interactions that occur in real materials. The hardening modulus is made a function of prior plastic deformation and the distance of the current stress point from the limit surface. The kinematic hardening rules of Mroz and Prager are used for the yield and limit surfaces, respectively. The structure of the model is capable of representing essential aspects of complex nonproportional deformation behavior, including direction of the plastic strain rate vector, memory of plastic strain range, cross-hardening effects, variation of hardening modulus, cyclic hardening or softening, cyclic racheting, and mean stress relaxation.


1991 ◽  
Vol 113 (3) ◽  
pp. 434-441 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper presents an elasto-plastic analysis of the repeated, frictionless, three-dimensional rolling contact similar to the ones produced by the rail-wheel geometry. This paper treats an elliptical contact rolling across a semi-infinite half space. The contact shape and loading: semi-major axis (in the rolling direction), w1 = 8 mm, and semi-minor axis, w2 = 5.88 mm, reflect standard rail and wheel curvatures and a wheel load of 149 KN (33,000 lb). A three-dimensional, elasto-plastic finite element model, developed earlier, is employed together with the elastic-linear-kinematic-hardening-plastic (ELKP) idealization of the cyclic plastic behaviour of a material similar to rail and wheel steels. The calculations present the displacements, the stress-strain distributions, stress-plastic strain histories and the plastic strain ranges in the half-space. The cyclic plasticity approaches a steady state after one contact with further contacts producing open but fully reversed stress-strain hysteresis loops, i.e., plastic shakedown.


Sign in / Sign up

Export Citation Format

Share Document