scholarly journals Modeling the Evolution of a cluster of gravitating bodies taking into account their absolutely inelastic collisions

PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dmitry Kiryan ◽  
George Kiryan
Keyword(s):  
Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Elliot Bentine ◽  
Adam J. Barker ◽  
Kathrin Luksch ◽  
Shinichi Sunami ◽  
Tiffany L. Harte ◽  
...  

Author(s):  
Gaurang Ruhela ◽  
Anirvan DasGupta

We consider the problem of a hopping ball excited by a travelling harmonic wave on an elastic surface. The ball, considered as a particle, is assumed to interact with the surface through inelastic collisions. The surface motion due to the wave induces a horizontal drift in the ball. The problem is treated analytically under certain approximations. The phase space of the hopping motion is captured by constructing a phase-velocity return map. The fixed points of the return map and its compositions represent periodic hopping solutions. The linear stability of the obtained periodic solution is studied in detail. The minimum frequency for the onset of periodic hops, and the subsequent loss of stability at the bifurcation frequency, have been determined analytically. Interestingly, for small values of wave amplitude, the analytical solutions reveal striking similarities with the results of the classical bouncing ball problem.


1969 ◽  
Vol 47 (10) ◽  
pp. 1723-1729 ◽  
Author(s):  
A. Dalgarno

A summary is presented of the processes by which low energy electrons lose energy in moving through the atmosphere and estimates are given of the cross sections and energy loss rates. The mechanisms by which thermal electrons cool are described and the cooling efficiencies are listed.


1987 ◽  
Vol 328 (2) ◽  
pp. 219-226
Author(s):  
W. Q. Shen ◽  
W. M. Qiao ◽  
W. L. Zhan ◽  
L. X. Ge ◽  
X. T. Zhu ◽  
...  
Keyword(s):  

1976 ◽  
Vol 61 (2) ◽  
pp. 113-116 ◽  
Author(s):  
R.A. Broglia ◽  
C.H. Dasso ◽  
Aa. Winther

Sign in / Sign up

Export Citation Format

Share Document