Thermally conductive cyanate ester nanocomposites filled with graphene nanosheets and multiwalled carbon nanotubes

2014 ◽  
Vol 25 (12) ◽  
pp. 1546-1551 ◽  
Author(s):  
Chunbao Zhao ◽  
Suichun Xu ◽  
Yufang Qin ◽  
Hexiang Chen ◽  
Wei Zhao ◽  
...  
ACS Nano ◽  
2010 ◽  
Vol 4 (7) ◽  
pp. 3861-3868 ◽  
Author(s):  
Tae-Keun Hong ◽  
Dong Wook Lee ◽  
Hyun Jung Choi ◽  
Hyeon Suk Shin ◽  
Byeong-Su Kim

2016 ◽  
Vol 30 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Hongfeng Li ◽  
Jiyou Gu ◽  
Changwei Liu ◽  
Dezhi Wang ◽  
Chunyan Qu

Multiwalled carbon nanotubes (MWCNTs) that were treated with mixed acids were used to reinforce the cyanate ester resin. Meanwhile, the relationship among structure, morphology, and property of the modified resin was investigated. The treated MWCNTs were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS). The XPS results showed that the oxygen content in the treated MWCNTs was higher than that of untreated MWCNTs and the FTIR results indicated the presence of oxygen-containing functional groups on the treated MWCNTs. The microstructure of the resin was characterized by scanning electron microscopy and transmission electron microscopy. The results showed that the dispersion properties of the treated MWCNTs in the resin matrix were improved and compared with the untreated analogue. Addition of MWCNTs to the resin had little effect on the thermodynamic properties of the resin system. Upon addition of 0.8 wt% of MWCNTs to the resin, the glass transition temperature of the cured resin changed from 298°C to 285°C, maintaining a relatively high value. For the resins containing 0.6 wt% of treated MWCNTs, the plane strain critical stress intensity factor and plane strain critical strain energy release rate in the system were determined to be 1.39 Pa·m0.5 and 364 J m−2, respectively, and the fracture toughness is increased by 45.7 and 76.0%, respectively. Furthermore, the modified resin system exhibits excellent toughness and thermal properties. Therefore, the modified resin may be suitable for future applications involving high performance composites and adhesives.


Sign in / Sign up

Export Citation Format

Share Document