Peroxide vulcanized EPDM rubber/polyhedral oligomeric silsesquioxane nanocomposites: Vulcanization behavior, mechanical properties, and thermal stability

2015 ◽  
Vol 55 (12) ◽  
pp. 2814-2820 ◽  
Author(s):  
Kang-Suk Lee ◽  
Young-Wook Chang
2010 ◽  
Vol 123-125 ◽  
pp. 169-172
Author(s):  
Steven Spoljaric ◽  
Robert A. Shanks

Dye-coupled polyhedral oligomeric silsesquioxane (POSS) were prepared and the coloured POSS particles were ultrasonically solution dispersed in poly(styrene-b-butadiene-b-styrene) (SBS). POSS molecules contained either isobutyl or phenyl groups to provide selective compatibility with either the soft (butadiene) or hard (styrene) phase within the block copolymer. The composition and thermal stability were characterised using thermogravimetry. Colour coordinates were measured. Tensile mechanical properties, creep and recovery were determined. Creep was modeled using the 4-element model of Maxwell and Kelvin-Voigt, while recovery correlated with the stretched-exponential function of Kohlrausch, Williams and Watts.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Benghong Yang ◽  
Meng Li ◽  
Bangping Song ◽  
Yun Wu

AbstractA series of Inorganic/organic nanocomposites were prepared by blending cage-like carboxyl-bearing polyhedral oligomeric silsesquioxane (carboxyl-POSS) with polymethyl mathacrylate (PMMA) in THF solvent. FTIR and 29Si-NMR were employed to characterize the structures of the nanocomposites. SEM images showed that the as-prepared films were smooth and no aggregation of carboxyl-POSS was observed. TGA and DSC results showed that the incorporation of small amount of nanosize carboxyl-POSS enhanced the thermal stability of PMMA. When 1.0 wt% of carboxyl-POSS was incorporated into PMMA matrix, the Tg and Td increased by 16.9 °C and 21.0 °C, respectively. However, higher POSS contents (>1.0 wt%) would deteriorate the thermal and mechanical properties of the nanocomposites.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 289-298
Author(s):  
Zhuoer Yu ◽  
Jun Zhang ◽  
Bangqiang Wu ◽  
Liqiang Wan ◽  
Farong Huang

Abstract An azido-terminated polyhedral oligomeric silsesquioxane (POSS) compound, octakis(azidopropyl-3-oxycarbonyl-1-decyl-10-thiopropyl-3-)POSS (OADTP), is synthesized and characterized. POSS-polytriazole (PTA) resins are prepared from an azide, an alkyne monomer, and OADTP. The toughening effect of OADTP on PTA resins is analyzed by impact performance test and electronic microscope characterization, and the thermal performance of resins is measured by thermogravimetric analysis and dynamic mechanical analysis. The results show that the addition of the POSS can improve the mechanical properties of PTA resins. The impact strength of POSS-PTA resins first increases and then decreases with the increase in the POSS compound, and the maximum one arrives at 54.8 kJ m−2 which increases by 44.2% as compared to 38 kJ m−2 of the PTA resin. A good thermal stability remains in POSS-PTA resins.


RSC Advances ◽  
2016 ◽  
Vol 6 (93) ◽  
pp. 90212-90219 ◽  
Author(s):  
Pengfei Yang ◽  
Guangming Zhu ◽  
Xuelin Shen ◽  
Xiaogang Yan ◽  
Jing Nie

A POSS–PCL shape memory network is synthesized. The cage-like POSS not only serves as a chemical netpoint, also causes improvement in mechanical properties. Optimized networks exhibit both excellent tensile strength and nearly complete recovery.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Benhong Yang ◽  
Meng Li ◽  
Yun Wu ◽  
Kang Wang

AbstractSeveral inorganic/organic nanocomposites were prepared via solution-blending of cage-like octahexyl-polyhedral oligomeric silsesquioxane (Oh-POSS) with polystyrene (PS) in THF solvent. FTIR and 29Si-NMR were employed to characterize the structures of the nanocomposites. SEM pictures showed that the sample films were smooth and no POSS aggregation was observed when POSS content was lower than 1.0 wt%. TGA and DSC were used to investigate the thermal property. The results showed that the incorporation of nanosized Oh-POSS enhanced the thermal stability of PS with low POSS content. When 1.0 wt% of Oh-POSS was incorporated into PS matrix, the Tg and Td increased by 7.7 °C and 8.2 °C, respectively. However, higher POSS contents (>1.0 wt%) would deteriorate the thermal property of the nanocomposites due to the severe congregation of POSS..


Sign in / Sign up

Export Citation Format

Share Document