Ultraviolet‐induced chain extension of poly(ethylene terephthalate) based on radical reaction with the aid of trimethylolpropane triacrylate and glycidyl methacrylate during extrusion

2020 ◽  
Vol 69 (7) ◽  
pp. 611-618
Author(s):  
Wei‐Tao Huang ◽  
Guang‐Jian He ◽  
Wen‐Dong Tang ◽  
Xian‐Wu Cao

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1331 ◽  
Author(s):  
Maria Jorda ◽  
Sergi Montava-Jorda ◽  
Rafael Balart ◽  
Diego Lascano ◽  
Nestor Montanes ◽  
...  

This work shows the potential of binary blends composed of partially bio-based poly(ethyelene terephthalate) (bioPET) and fully bio-based poly(amide) 10,10 (bioPA1010). These blends are manufactured by extrusion and subsequent injection moulding and characterized in terms of mechanical, thermal and thermomechanical properties. To overcome or minimize the immiscibility, a glycidyl methacrylate copolymer, namely poly(styrene-ran-glycidyl methacrylate) (PS-GMA; Xibond™ 920) was used. The addition of 30 wt % bioPA provides increased renewable content up to 50 wt %, but the most interesting aspect is that bioPA contributes to improved toughness and other ductile properties such as elongation at yield. The morphology study revealed a typical immiscible droplet-like structure and the effectiveness of the PS-GMA copolymer was assessed by field emission scanning electron microcopy (FESEM) with a clear decrease in the droplet size due to compatibilization. It is possible to conclude that bioPA1010 can positively contribute to reduce the intrinsic stiffness of bioPET and, in addition, it increases the renewable content of the developed materials.



2004 ◽  
Vol 856 ◽  
Author(s):  
Ali Emrah Keyfoglu ◽  
Ulku Yilmazer

ABSTRACTThe effects of chain extension and branching on the properties of nanocomposites produced from recycled poly (ethylene-terephthalate) and organically modified clay were investigated. As the potential chain extension/branching agent, maleic anhydride (MA) and pyromellitic dianhydride (PMDA) were used. The nanocomposites were prepared by twin-screw extrusion, followed by injection molding. Recycled poly (ethylene-terephthalate) was mixed with 2, 3 or 4 weight % of organically modified montmorillonite. During the second extrusion step, 0.5, 0.75 or 1 weight % of MA or PMDA was added to the products of the first extrusion. The effects of the sequence of addition of the ingredients on the final properties of the nanocomposites were also investigated. X-Ray Diffraction analysis showed that, the interlayer spacing of Cloisite 25A expanded from 19.21 Å to about 28–34 Å after processing with polymer indicating an intercalated structure. PMDA content, MA content and screw speed did not have a significant effect on the expanded interlayer distance. In the first extrusion step, nanocomposites containing 3% organoclay content gave significant increase in Young's modulus and decrease in elongation at break values indicating good interfacial adhesion. After the addition of anhydrides, it was observed that, in general PMDA improved the mechanical properties of the nanocomposite owing to the branching and chain extension effects that increase the molecular weight. However, MA did not significantly improve the properties, since in this case the chain scission seemed to be more dominant.





2011 ◽  
Vol 51 (9) ◽  
pp. 1791-1796 ◽  
Author(s):  
Yanjun Zhang ◽  
Chen Zhang ◽  
Hangquan Li ◽  
Zhongjie Du


2010 ◽  
Vol 120 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Noriaki Kunimune ◽  
Kazushi Yamada ◽  
Yew Wei Leong ◽  
Supaphorn Thumsorn ◽  
Hiroyuki Hamada




Sign in / Sign up

Export Citation Format

Share Document