scholarly journals Structures of the first and second double-stranded RNA-binding domains of human TAR RNA-binding protein

2010 ◽  
Vol 20 (1) ◽  
pp. 118-130 ◽  
Author(s):  
Seisuke Yamashita ◽  
Takashi Nagata ◽  
Masahito Kawazoe ◽  
Chie Takemoto ◽  
Takanori Kigawa ◽  
...  
2021 ◽  
Author(s):  
Yanzhou Zhang ◽  
Mahmoud Bassal ◽  
Daniel Friedrich ◽  
Simone Ummarino ◽  
Tom Verbiest ◽  
...  

C/EBPα has known to be a transcription factor that involved in Neutrophil differentiation for decades. However, exploring the Chromatin RNA Immunoprecipitation Sequencing (RIP), we discover that C/EBPα is a RNA binding protein mainly interacts with RNA introns. Structure study and RNA electrophoretic mobility shift assay (REMSA) show that C/EBPα interacts with RNA through two novel RNA binding domains distinct from its DNA binding domain. Mouse bone marrow transplantation and in vitro cytokine assay reveal that C/EBPα RNA binding is critical for Macrophage differentiation but not Neutrophil differentiation. Mechanically, RNA binding domains control specific gene transcription. In particular, PU.1 intron 4 RNA interacts with C/EBPα and recruit C/EBPα to its enhancer site, which facilitate PU.1 expression. Taken together, C/EBPα is demonstrated to be a RNA binding protein with unique function distinct from its DNA binding activity. Our finding transforms our knowledge of transcriptional regulation by transcription factor.


1995 ◽  
Vol 92 (21) ◽  
pp. 9445-9449 ◽  
Author(s):  
G. P. Cosentino ◽  
S. Venkatesan ◽  
F. C. Serluca ◽  
S. R. Green ◽  
M. B. Mathews ◽  
...  

1997 ◽  
Vol 138 (2) ◽  
pp. 239-253 ◽  
Author(s):  
Christian R. Eckmann ◽  
Michael F. Jantsch

We have cloned and characterized Xlrbpa, a double-stranded RNA-binding protein from Xenopus laevis. Xlrbpa is a protein of 33 kD and contains three tandemly arranged, double-stranded RNA-binding domains (dsRBDs) that bind exclusively to double-stranded RNA in vitro, but fail to bind either single-stranded RNA or DNA. Sequence data and the overall organization of the protein suggest that Xlrbpa is the Xenopus homologue of human TAR-RNA binding protein (TRBP), a protein isolated by its ability to bind to human immunodeficiency virus (HIV) TAR-RNA. In transfection assays, TRBP has also been shown to inhibit the interferon-induced protein kinase PKR possibly by direct physical interaction. To determine the function of Xlrbpa and its human homologue we studied the expression and intracellular distribution of the two proteins. Xlrbpa is ubiquitously expressed with marked quantitative differences amongst all tissues. Xlrbpa and human TRBP can be detected in the cytoplasm and nucleus by immunofluorescence staining and Western blotting. Sedimentation gradient analyses and immunoprecipitation experiments suggest an association of cytoplasmic Xlrbpa with ribosomes. In contrast, a control construct containing two dsRBDs fails to associate with ribosomes in microinjected Xenopus oocytes. Nuclear staining of Xenopus lampbrush chromosome preparations showed the association of the protein with nucleoli, again indicating an association of the protein with ribosomal RNAs. Additionally, Xlrbpa could be located on lampbrush chromosomes and in snurposomes. Immunoprecipitations of nuclear extracts demonstrated the presence of the protein in heterogeneous nuclear (hn) RNP particles, but not in small nuclear RNPs, explaining the chromosomal localization of the protein. It thus appears that Xlrbpa is a general double-stranded RNA-binding protein which is associated with the majority of cellular RNAs, ribosomal RNAs, and hnRNAs either alone or as part of an hnRNP complex.


Science ◽  
1991 ◽  
Vol 251 (5001) ◽  
pp. 1597-1600 ◽  
Author(s):  
A Gatignol ◽  
A Buckler-White ◽  
B Berkhout ◽  
K. Jeang

2016 ◽  
Vol 480 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Akihiko Komuro ◽  
Yuya Homma ◽  
Takaharu Negoro ◽  
Glen N. Barber ◽  
Curt M. Horvath

2013 ◽  
Vol 87 (24) ◽  
pp. 13409-13421 ◽  
Author(s):  
J. E. Petrillo ◽  
P. A. Venter ◽  
J. R. Short ◽  
R. Gopal ◽  
S. Deddouche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document