scholarly journals Using machine learning to improve ensemble docking for drug discovery

2020 ◽  
Vol 88 (10) ◽  
pp. 1263-1270 ◽  
Author(s):  
Tanay Chandak ◽  
John P. Mayginnes ◽  
Howard Mayes ◽  
Chung F. Wong
2019 ◽  
Vol 18 (03) ◽  
pp. 1920001 ◽  
Author(s):  
Chung F. Wong

Ensemble docking has provided an inexpensive method to account for receptor flexibility in molecular docking. However, it is still unclear how best to use the docking scores from multiple structures to classify compounds into actives and inactives. Previous studies have also found that the performance of classification could decrease rather than increase with the number of structures included in the ensemble. Machine learning could help to alleviate these problems.


2020 ◽  
Vol 20 (14) ◽  
pp. 1375-1388 ◽  
Author(s):  
Patnala Ganga Raju Achary

The scientists, and the researchers around the globe generate tremendous amount of information everyday; for instance, so far more than 74 million molecules are registered in Chemical Abstract Services. According to a recent study, at present we have around 1060 molecules, which are classified as new drug-like molecules. The library of such molecules is now considered as ‘dark chemical space’ or ‘dark chemistry.’ Now, in order to explore such hidden molecules scientifically, a good number of live and updated databases (protein, cell, tissues, structure, drugs, etc.) are available today. The synchronization of the three different sciences: ‘genomics’, proteomics and ‘in-silico simulation’ will revolutionize the process of drug discovery. The screening of a sizable number of drugs like molecules is a challenge and it must be treated in an efficient manner. Virtual screening (VS) is an important computational tool in the drug discovery process; however, experimental verification of the drugs also equally important for the drug development process. The quantitative structure-activity relationship (QSAR) analysis is one of the machine learning technique, which is extensively used in VS techniques. QSAR is well-known for its high and fast throughput screening with a satisfactory hit rate. The QSAR model building involves (i) chemo-genomics data collection from a database or literature (ii) Calculation of right descriptors from molecular representation (iii) establishing a relationship (model) between biological activity and the selected descriptors (iv) application of QSAR model to predict the biological property for the molecules. All the hits obtained by the VS technique needs to be experimentally verified. The present mini-review highlights: the web-based machine learning tools, the role of QSAR in VS techniques, successful applications of QSAR based VS leading to the drug discovery and advantages and challenges of QSAR.


2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


2021 ◽  
pp. 247255522110281
Author(s):  
August Allen ◽  
Lina Nilsson

In this perspective, the authors paint a vision for industrializing drug discovery with an “atoms and bits” approach. This approach leverages advancements in machine learning, automation, and biological tools to create a platform for drug discovery that de-specializes the output of insights and generates feedback loops to iterate on each success and failure. Recursion Pharmaceuticals, where the authors work, is provided as an example of how one company is attempting to achieve this vision.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2747 ◽  
Author(s):  
Eliane Briand ◽  
Ragnar Thomsen ◽  
Kristian Linnet ◽  
Henrik Berg Rasmussen ◽  
Søren Brunak ◽  
...  

The human carboxylesterase 1 (CES1), responsible for the biotransformation of many diverse therapeutic agents, may contribute to the occurrence of adverse drug reactions and therapeutic failure through drug interactions. The present study is designed to address the issue of potential drug interactions resulting from the inhibition of CES1. Based on an ensemble of 10 crystal structures complexed with different ligands and a set of 294 known CES1 ligands, we used docking (Autodock Vina) and machine learning methodologies (LDA, QDA and multilayer perceptron), considering the different energy terms from the scoring function to assess the best combination to enable the identification of CES1 inhibitors. The protocol was then applied on a library of 1114 FDA-approved drugs and eight drugs were selected for in vitro CES1 inhibition. An inhibition effect was observed for diltiazem (IC50 = 13.9 µM). Three others drugs (benztropine, iloprost and treprostinil), exhibited a weak CES1 inhibitory effects with IC50 values of 298.2 µM, 366.8 µM and 391.6 µM respectively. In conclusion, the binding site of CES1 is relatively flexible and can adapt its conformation to different types of ligands. Combining ensemble docking and machine learning approaches improves the prediction of CES1 inhibitors compared to a docking study using only one crystal structure.


Author(s):  
Joel Ricci-Lopez ◽  
Sergio A. Aguila ◽  
Michael K. Gilson ◽  
Carlos A. Brizuela

Sign in / Sign up

Export Citation Format

Share Document