Paraffin Oil Induces Resistance Againts Powdery Mildew in Grapevine Through Salicylic Acid Signaling

2021 ◽  
Author(s):  
Xénia Pálfi ◽  
Miklós Lovas ◽  
Zsolt Zsófi ◽  
János Kátai ◽  
Zoltán Karácsony ◽  
...  
Amino Acids ◽  
2010 ◽  
Vol 40 (5) ◽  
pp. 1473-1484 ◽  
Author(s):  
Jiugeng Chen ◽  
Yueqin Zhang ◽  
Cuiping Wang ◽  
Weitao Lü ◽  
Jing Bo Jin ◽  
...  

2018 ◽  
Vol 116 (2) ◽  
pp. 490-495 ◽  
Author(s):  
Hong-Xing Xu ◽  
Li-Xin Qian ◽  
Xing-Wei Wang ◽  
Ruo-Xuan Shao ◽  
Yue Hong ◽  
...  

Phloem-feeding insects feed on plant phloem using their stylets. While ingesting phloem sap, these insects secrete saliva to circumvent plant defenses. Previous studies have shown that, to facilitate their feeding, many phloem-feeding insects can elicit the salicylic acid- (SA-) signaling pathway and thus suppress effective jasmonic acid defenses. However, the molecular basis for the regulation of the plant's defense by phloem-feeding insects remains largely unknown. Here, we show that Bt56, a whitefly-secreted low molecular weight salivary protein, is highly expressed in the whitefly primary salivary gland and is delivered into host plants during feeding. Overexpression of the Bt56 gene in planta promotes susceptibility of tobacco to the whitefly and elicits the SA-signaling pathway. In contrast, silencing the whitefly Bt56 gene significantly decreases whitefly performance on host plants and interrupts whitefly phloem feeding with whiteflies losing the ability to activate the SA pathway. Protein-protein interaction assays show that the Bt56 protein directly interacts with a tobacco KNOTTED 1-like homeobox transcription factor that decreases whitefly performance and suppresses whitefly-induced SA accumulation. The Bt56 orthologous genes are highly conserved but differentially expressed in different species of whiteflies. In conclusion, Bt56 is a key salivary effector that promotes whitefly performance by eliciting salicylic acid-signaling pathway.


2016 ◽  
Vol 7 ◽  
Author(s):  
Hua Lu ◽  
Jean T. Greenberg ◽  
Loreto Holuigue

PLoS Genetics ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. e1008873
Author(s):  
Ushio Fujikura ◽  
Kazune Ezaki ◽  
Gorou Horiguchi ◽  
Mitsunori Seo ◽  
Yuri Kanno ◽  
...  

2007 ◽  
Vol 20 (8) ◽  
pp. 966-976 ◽  
Author(s):  
Wenming Wang ◽  
Alessandra Devoto ◽  
John G. Turner ◽  
Shunyuan Xiao

The powdery mildew resistance genes RPW8.1 and RPW8.2 from Arabidopsis differ from the other isolated plant resistance (R) genes in their predicted protein domains and their resistance spectrum. The two homologous RPW8 genes encode small proteins featuring a predicted amino-terminal transmembrane anchor domain and a coiled-coil domain and confer resistance to a broad spectrum of powdery mildews. Here, we show that Arabidopsis plants expressing the RPW8 genes have enhanced resistance to another biotrophic pathogen, Hyaloperonospora parasitica, raising the possibility that the RPW8 genes may function to enhance salicylic-acid-dependent basal defenses, rather than as powdery-mildew-specific R genes. When overexpressed from their native promoters, the RPW8 genes confer enhanced resistance to the Cauliflower mosaic virus, but render plants more susceptible to the necrotrophic fungal pathogens Alternaria and Botrytis spp. Furthermore, we show that the RPW8 proteins appear to be localized to the endomembrane system, overlapping with the endoplasmic reticulum–associated small GTPase SAR1, and accumulate to higher levels in response to application of exogenous salicylic acid, one of the signaling molecules of plant defense.


Sign in / Sign up

Export Citation Format

Share Document