Structural, surface morphological, and optical properties of nanocrystalline Cu2 O and CuO films formed by RF magnetron sputtering: Oxygen partial pressure effect

2012 ◽  
Vol 209 (7) ◽  
pp. 1279-1286 ◽  
Author(s):  
M. Hari Prasad Reddy ◽  
J. F. Pierson ◽  
S. Uthanna
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
P. Narayana Reddy ◽  
A. Sreedhar ◽  
M. Hari Prasad Reddy ◽  
S. Uthanna ◽  
J. F. Pierson

Silver-copper-oxide thin films were formed by RF magnetron sputtering technique using Ag80Cu20target at various oxygen partial pressures in the range 5 × 10−3–8 ×10−2 Pa and substrate temperatures in the range 303–523 K. The effect of oxygen partial pressure and substrate temperature on the structure and surface morphology and electrical and optical properties of the films were studied. The Ag-Cu-O films formed at room temperature (303 K) and at low oxygen partial pressure of 5 × 10−3 Pa were mixed phase of Ag2Cu2O3and Ag, while those deposited at 2 × 10−2 Pa were composed of Ag2Cu2O4and Ag2Cu2O3phases. The crystallinity of the films formed at oxygen partial pressure of 2 × 10−2Pa increased with the increase of substrate temperature from 303 to 423 K. Further increase of substrate temperature to 523 K, the films were decomposed in to Ag2O and Ag phases. The electrical resistivity of the films decreased from 0.8 Ωcm with the increase of substrate temperature from 303 to 473 K due to improvement in the crystallinity of the phase. The optical band gap of the Ag-Cu-O films increased from 1.47 to 1.83 eV with the increase of substrate temperature from 303 to 473 K.


1998 ◽  
Vol 13 (12) ◽  
pp. 3442-3448 ◽  
Author(s):  
Dong Joo Kim ◽  
Tae Song Kim ◽  
Jeon Kook Lee ◽  
Hyung Jin Jung

The lead zirconate titanate (PZT) thin film was deposited on platinized silicon wafer substrate by the rf magnetron sputtering method. In order to investigate the effect of cooling ambient, oxygen partial pressure was controlled during cooling PZT films. The PZT films cooled at lower oxygen partial pressure had perovskite phase and pyrochlore phase in both as-grown and postannealed films, but in the PZT films cooled at higher oxygen partial pressure, pyrochlore phases were not detected by XRD. As the oxygen partial pressure became lower during cooling, the capacitors had low values of remanent polarization and coercive field for as-grown films. The PZT capacitor with such a low value was recovered by postannealing in air, but its electrical properties had the same tendency before and after annealing. Microstructure was also affected by cooling ambient. Higher oxygen partial pressure on cooling reduced the number of very fine grains, and enhanced uniform grain distribution. Fatigue characteristics were also enhanced by cooling at higher oxygen partial pressure. However, the imprint was negligible irrespective of oxygen partial pressure upon cooling. The cooling procedure at higher oxygen ambients is believed to reduce the amounts of nonferroelectric second phases and oxygen vacancies. We find that oxygen partial pressure during cooling is a considerable process parameter. Therefore, care should be taken in treating the parameter after depositing films.


2015 ◽  
Vol 19 (sup9) ◽  
pp. S9-360-S9-363
Author(s):  
D. Zhou ◽  
C. T. Yang ◽  
Y. X. Y. Yang ◽  
Y. Zhang ◽  
W. X. Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document