Comments on the paper “ultrasonic wave propagation in tetragonal crystals and measurements of the elastic constants of strontium molybdate”

1972 ◽  
Vol 13 (1) ◽  
pp. 89-93 ◽  
Author(s):  
B. W. James
2021 ◽  
Vol 11 (19) ◽  
pp. 8888
Author(s):  
Seongin Moon ◽  
To Kang ◽  
Soonwoo Han ◽  
Kyung-Mo Kim ◽  
Hyung-Ha Jin ◽  
...  

Traditional ultrasonic imaging methods have a low accuracy in the localization of defects in austenitic welds because the anisotropy and inhomogeneity of the welds cause distortion of the ultrasonic wave propagation paths in anisotropic media. The distribution of the grain orientation in the welds influences the ultrasonic wave velocity and ultrasonic wave propagation paths. To overcome this issue, a finite element analysis (FEA)-based ultrasonic imaging methodology for austenitic welds is proposed in this study. The proposed ultrasonic imaging method uses a wave propagation database to synthetically focus the inter-element signal recorded with a phased array system using a delay-and-sum strategy. The wave propagation database was constructed using FEA considering the grain orientation distribution and the anisotropic elastic constants in the welds. The grain orientation was extracted from a macrograph obtained from a dissimilar metal weld specimen, after which the elastic constants were optimized using FEA with grain orientation information. FEA was performed to calculate a full matrix of time-domain signals for all combinations of the transmitting and receiving elements in the phased array system. The proposed approach was assessed for an FEA-based simulated model embedded in a defect. The simulation results proved that the newly proposed ultrasonic imaging method can be used for defect localization in austenitic welds.


2016 ◽  
Vol 140 (5) ◽  
pp. 3710-3717 ◽  
Author(s):  
Toshiho Hata ◽  
Yoshiki Nagatani ◽  
Koki Takano ◽  
Mami Matsukawa

Sign in / Sign up

Export Citation Format

Share Document