Electronic Band Topology of Monoclinic MoS 2 Monolayer: Study Based on Elementary Band Representations for Layer Groups

2020 ◽  
Vol 14 (12) ◽  
pp. 2000351
Author(s):  
Ivanka Milošević ◽  
Zoran P. Popović ◽  
Božidar Nikolić ◽  
Milan Damnjanović
Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 967-970
Author(s):  
D JENKINS

1972 ◽  
Vol 33 (C3) ◽  
pp. C3-223-C3-233 ◽  
Author(s):  
I. B. GOLDBERG ◽  
M. WEGER

2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 7
Author(s):  
B. Bachir Bouiadjra ◽  
N. Mehnane ◽  
N. Oukli

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


2021 ◽  
Vol 575 (1) ◽  
pp. 11-17
Author(s):  
S. Krylova ◽  
I. Gudim ◽  
A. Aleksandrovsky ◽  
A. Vtyurin ◽  
A. Krylov

2021 ◽  
Vol 125 (13) ◽  
pp. 7495-7501
Author(s):  
Gang Wang ◽  
Jinju Zheng ◽  
Boyi Xu ◽  
Chaonan Zhang ◽  
Yue Zhu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. Heinrich ◽  
T. Saule ◽  
M. Högner ◽  
Y. Cui ◽  
V. S. Yakovlev ◽  
...  

AbstractTime-resolved photoelectron spectroscopy with attosecond precision provides new insights into the photoelectric effect and gives information about the timing of photoemission from different electronic states within the electronic band structure of solids. Electron transport, scattering phenomena and electron-electron correlation effects can be observed on attosecond time scales by timing photoemission from valence band states against that from core states. However, accessing intraband effects was so far particularly challenging due to the simultaneous requirements on energy, momentum and time resolution. Here we report on an experiment utilizing intracavity generated attosecond pulse trains to meet these demands at high flux and high photon energies to measure intraband delays between sp- and d-band states in the valence band photoemission from tungsten and investigate final-state effects in resonant photoemission.


Sign in / Sign up

Export Citation Format

Share Document