The Adsorption Structure of Polyethylene Imine on Copper Surfaces for Electrodeposition

Author(s):  
Ralf Schmidt ◽  
Christopher D. Bandas ◽  
Andrew A. Gewirth ◽  
Jan M. Knaup
2015 ◽  
Vol 180 ◽  
pp. 415-438 ◽  
Author(s):  
Anton Kokalj

The bonding of benzotriazole—an outstanding corrosion inhibitor for copper—on reduced and oxidized copper surfaces is discussed on the basis of density functional theory (DFT) calculations. Calculations reveal that benzotriazole is able to bond with oxide-free and oxidized copper surfaces and on both of them it bonds significantly stronger to coordinatively unsaturated Cu sites. This suggests that benzotriazole is able to passivate the reactive under-coordinated surface sites that are plausible microscopic sites for corrosion attack. Benzotriazole can adsorb in a variety of different forms, yet it forms a strong molecule–surface bond only in deprotonated form. The bonding is even stronger when the deprotonated form is incorporated into organometallic adcomplexes. This is consistent with existing experimental evidence that benzotriazole inhibits corrosion by forming protective organometallic complexes. It is further shown that adsorption of benzotriazole considerably reduces the metal work function, which is a consequence of a large permanent molecular dipole and a properly oriented adsorption structure. It is argued that such a pronounced effect on the work function might be relevant for corrosion inhibition, because it should diminish the anodic corrosion reaction, which is consistent with existing experimental evidence that benzotriazole, although a mixed type inhibitor, predominantly affects the anodic reaction.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-487-C8-490
Author(s):  
M. D. CRAPPER ◽  
C. E. RILEY ◽  
D. P. WOODRUFF

1975 ◽  
Vol 29 (6) ◽  
pp. 496-500 ◽  
Author(s):  
D. Kember ◽  
N. Sheppard

Infrared emission spectra from metal samples with oxide surface layers are shown to be very advantageously studied using the spectrum-ratioing facility of a recording infrared interferometer. The emission from a given sample is ratioed against that from a black-body emitter at the same temperature so as to give emittance as a function of wavenumber directly. This method has very useful application to irregularly shaped metal emitters. In the absence of selective reflection there is a direct correspondence between emission and absorption spectra for thin layers of an emitting substance. However, the presence of selective reflection leads to reduced emission and to considerable differences in the appearance of “absorption” and emission spectra in regions of strong absorption. Emission spectra obtained from copper plates heated, above 150°C, for different periods in air are shown clearly to indicate the presence of cuprous, Cu(I), and cupric, Cu(II), oxides in the surface layer.


2021 ◽  
Vol 202 ◽  
pp. 111656
Author(s):  
Luis Caro-Lara ◽  
Esteban Ramos-Moore ◽  
Ignacio T. Vargas ◽  
Magdalena Walczak ◽  
Christian Fuentes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document