Comparisons of theRPA, SCRPA, Tamm-Dancoff, and fullCI methods by analysis of their transition density matrices, oscillator strengths, and energy moments of oscillator strengths for the electric dipole transitions from the ground state of the B+ ion (frozenK-shell model)

1978 ◽  
Vol 13 (6) ◽  
pp. 743-767 ◽  
Author(s):  
Everett G. Larson
2021 ◽  
Vol 154 (12) ◽  
pp. 124125
Author(s):  
Paul A. Johnson ◽  
Hubert Fortin ◽  
Samuel Cloutier ◽  
Charles-Émile Fecteau

1985 ◽  
Vol 63 (3) ◽  
pp. 417-427 ◽  
Author(s):  
Ashok Kumar ◽  
William J. Meath

Dipole oscillator strength distributions have been constructed and used to evaluate integrated oscillator strengths, and a variety of dipole oscillator strength properties, for ground state SO2, CS2, and OCS. Each distribution has been constructed by using experimental and theoretical photoabsorption cross sections and by subjecting the resulting dipole oscillator strength data to constraints provided by the Thomas–Reiche–Kuhn sum rule and molar refractivity data for the relevant dilute gases. The discussion includes graphical presentations of how various spectral regions of the dipole oscillator strength distributions contribute to the more important dipole properties.


1974 ◽  
Vol 29 (10) ◽  
pp. 1498-1500 ◽  
Author(s):  
W. Czieslik ◽  
L. Carpentier ◽  
D. H. Sutter

Abstract The microwave spectrum of Methylenecyclobutenone has been investigated in the vibrational ground state in the range of 8 to 26.5 GHz. From a least square fit of 12 lines with J ≦ 4 the rotational constants have been calculated as A =5.775664±0.000009 GHz, B = 4.312314 ± 0.000007 GHz, C = 2.467814±0.000008 GHz. The inertia defect Δ = - 0.09 amuÅ2 indicates that the molecule is planar. From Stark-effect measurements the components of the molecular electric dipole moment were obtaied as |μa| = 2.04 ± 0.02 D, |μb| = 2.70±0.03 D, |μtotal| = 3.39 ± 0.05 D.


2018 ◽  
Vol 71 (4) ◽  
pp. 295 ◽  
Author(s):  
Dylan Jayatilaka ◽  
Kunal K. Jha ◽  
Parthapratim Munshi

Formulae for the static electronic polarizability and hyperpolarizability are derived in terms of moments of the ground-state electron density matrix by applying the Unsöld approximation and a generalization of the Fermi-Amaldi approximation. The latter formula for the hyperpolarizability appears to be new. The formulae manifestly transform correctly under rotations, and they are observed to be essentially cumulant expressions. Consequently, they are additive over different regions. The properties of the formula are discussed in relation to others that have been proposed in order to clarify inconsistencies. The formulae are then tested against coupled-perturbed Hartree-Fock results for a set of 40 donor-π-acceptor systems. For the polarizability, the correlation is reasonable; therefore, electron density matrix moments from theory or experiment may be used to predict polarizabilities. By constrast, the results for the hyperpolarizabilities are poor, not even within one or two orders of magnitude. The formula for the two- and three-particle density matrices obtained as a side result in this work may be interesting for density functional theories.


2008 ◽  
Vol 17 (supp01) ◽  
pp. 208-218 ◽  
Author(s):  
XIAO-TAO HE ◽  
ZHONG-ZHOU REN

The ground state bands observed in even-even transfermium nuclei 250 Fm and 252,254 No are investigated by the cranked shell model with the particle-number conserving treatment for the monopole and quadrupole pairing correlations. The experimental variations of the kinematic moment of inertia with rotational frequency are reproduced very well in our calculation. Our results show bankbendings of [Formula: see text] at ħω ≈ 0.275 and 0.300 MeV in 252 No and 254 No , respectively. The detailed information about the contribution to alignment from each cranked single particle level exhibits that the backbending is mainly due to the rapidly aligned angular momentum of proton 1j15/2 [770]1/2 pairs and neutron 2h11/2 [761]3/2, 1j15/2 [734]9/2 pairs the band crossing.


2015 ◽  
Vol 19 (01-03) ◽  
pp. 527-534
Author(s):  
Kamlesh Awasthi ◽  
Hung-Yu Hsu ◽  
Hung-Chu Chiang ◽  
Chi-Lun Mai ◽  
Chen-Yu Yeh ◽  
...  

Polarized electroabsorption (E-A) spectra of highly efficient porphyrin sensitizers (YD2 and YD2-oC8) have been measured in benzene solution. Polarized E-A spectra of these push–pull porphyrins embedded in poly(methyl methacrylate) films or sensitized on TiO 2 films are also observed. Based on the analysis of the E-A spectra, the magnitude of the electric dipole moment both in the ground state and in the lowest excited state have been evaluated in solution and in solid films. The electric dipole moment in the excited state of these compounds is very large on TiO 2 films, suggesting the interfacial charge transfer on TiO 2 surface following photoexcitation of porphyrin dyes. The electric dipole moment in the excited state evaluated from the E-A spectra is very different from the one evaluated from the electrophotoluminescence spectra on TiO 2, suggesting that the strong local field of TiO 2 films is applied to the fluorescing dyes attached to TiO 2 films.


Sign in / Sign up

Export Citation Format

Share Document