scholarly journals Axonal regeneration in zebrafish spinal cord

Regeneration ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 43-60 ◽  
Author(s):  
Sukla Ghosh ◽  
Subhra Prakash Hui
2009 ◽  
Vol 12 (9) ◽  
pp. 1106-1113 ◽  
Author(s):  
Laura Taylor Alto ◽  
Leif A Havton ◽  
James M Conner ◽  
Edmund R Hollis II ◽  
Armin Blesch ◽  
...  

2017 ◽  
Vol 117 (1) ◽  
pp. 215-229 ◽  
Author(s):  
Katelyn N. Benthall ◽  
Ryan A. Hough ◽  
Andrew D. McClellan

Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results. Thus, after disruption of long-axon projections from RS neurons in the lamprey, descending propriospinal (PS) neurons appear to be a viable compensatory mechanism for indirect activation of spinal locomotor networks.


2015 ◽  
Vol 14 (1) ◽  
pp. 50-52
Author(s):  
Carlos Abraham Arellanes-Chávez ◽  
Ariana Martínez Bojórquez ◽  
Ernesto Ramos Martínez

OBJECTIVES: To determine whether the intervention in rats is effective in terms of spinal cord regeneration and locomotor recovery, in order to obtain sufficient evidence to apply the therapy in humans. METHODS: a randomized, controlled, experimental, prospective, randomized trial was conducted, with a sample of 15 adult female Sprague-Dawley rats weighing 250 gr. They were divided into three equal groups, and trained for 2 weeks based on Pavlov's classical conditioning method, to strengthen the muscles of the 4 legs, stimulate the rats mentally, and keep them healthy for the surgery. RESULTS: It was observed that implantation of these cells into the site of injury may be beneficial to the process of spinal cord regeneration after spinal trauma, to mediate secretion of neurotrophic and neuroprotective chemokines, and that the OECs have the ability to bridge the repair site and decrease the formation of gliosis, creating a favorable environment for axonal regeneration. CONCLUSION: It is emphasized that the olfactory ensheathing glial cells possess unique regenerative properties; however, it was not until recently that the activity of promoting central nervous system regeneration was recognized.


2017 ◽  
Vol 159 (5) ◽  
pp. 947-957 ◽  
Author(s):  
Dong Kwang Seo ◽  
Jeong Hoon Kim ◽  
Joongkee Min ◽  
Hyung Ho Yoon ◽  
Eun-Sil Shin ◽  
...  

2006 ◽  
Vol 361 (1473) ◽  
pp. 1565-1574 ◽  
Author(s):  
Marie T Filbin

In the past decade there has been an explosion in our understanding, at the molecular level, of why axons in the adult, mammalian central nervous system (CNS) do not spontaneously regenerate while their younger counterparts do. Now a number of inhibitors of axonal regeneration have been described, some of the receptors they interact with to transduce the inhibitory signal are known, as are some of the steps in the signal transduction pathway that is responsible for inhibition. In addition, developmental changes in the environment and in the neurons themselves are also now better understood. This knowledge in turn reveals novel, putative sites for drug development and therapeutic intervention after injury to the brain and spinal cord. The challenge now is to determine which of these putative treatments are the most effective and if they would be better applied in combination rather than alone. In this review I will summarize what we have learnt about these molecules and how they signal. Importantly, I will also describe approches that have been shown to block inhibitors and encourage regeneration in vivo . I will also speculate on what the differences are between the neonatal and adult CNS that allow the former to regenerate and the latter not to.


Author(s):  
Mitsuhiro Enomoto ◽  
Madoka Ukegawa ◽  
Kazuyuki Fukushima ◽  
Kush Bhatt ◽  
Yoshiaki Wakabayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document