Robust adaptive finite‐time trajectory tracking control of a quadrotor aircraft

Author(s):  
Di Wu ◽  
Weijian Zhang ◽  
Haibo Du ◽  
Xiangyu Wang
Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2020 ◽  
Vol 42 (15) ◽  
pp. 2956-2968
Author(s):  
Bo Li ◽  
Hanyu Ban ◽  
Wenquan Gong ◽  
Bing Xiao

This work presents a novel control strategy for the trajectory tracking control of the quadrotor unmanned aerial vehicle (UAV) with parameter uncertainties and external unknown disturbances. As a stepping stone, two fixed-time extended state observers (ESOs) are proposed to estimate the external disturbances and/or the parameter uncertainties for the position and attitude subsystems, respectively. Then, the fast terminal sliding mode-based improved dynamic surface control (DSC) approaches are developed. To eliminate the problem of “explosion of complexity” inherent in backstepping method-based controllers, the finite-time command filters and an error compensation signals are used in the design of the dynamic surface controllers. Subsequently, the practically finite-time stability of the closed-loop tracking system is guaranteed by utilizing the proposed control scheme. The simulation results are obtained to demonstrate the effectiveness and fine performance of the proposed trajectory tracking control approaches.


2020 ◽  
Vol 357 (16) ◽  
pp. 11472-11495 ◽  
Author(s):  
Hongde Qin ◽  
Chengpeng Li ◽  
Yanchao Sun ◽  
Xiaojia Li ◽  
Yutong Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document