In situ study on the impact of total dissolved gas supersaturation on endemic fish in the Upper Yangtze River

2019 ◽  
Vol 35 (9) ◽  
pp. 1511-1519 ◽  
Author(s):  
Shudan Xue ◽  
Li Kefeng ◽  
Ruifeng Liang ◽  
Lu Cao ◽  
Yuanming Wang ◽  
...  
Author(s):  
Xue ◽  
Wang ◽  
Liang ◽  
Li ◽  
Li

Two endemic fish in the upper Yangtze River, the Rock Carp (Procypris rabaudi) and Prenant’s Schizothoracin (Schizothorax prenanti), were used as research objects in this study to assess the effects of total dissolved gas (TDG) supersaturation on fish of varying sizes. Fish were exposed to TDG-supersaturated water at the levels of 145, 140, 135, 130, and 125%. The results showed that fish swam slowly, responded clumsily, and then exhibited spiral swimming performance after a period of exposure to TDG-supersaturated water. Fish exhibited exophthalmos, body swelling, gill bleeding, and caudal fin bleeding when they died in the TDG-supersaturated water. With the increase in TDG supersaturation, the tolerance capacity of fish to supersaturated TDG significantly reduced. At high supersaturation, the difference in survival time between species was not significant, while fish with smaller sizes showed greater tolerance capacity. At low supersaturation, the tolerance capacity of fish was mainly affected by species, and the influence of size was relatively small. With the decrease in TDG supersaturation, the catalase (CAT) activity first increased and then decreased. Rock Carp displayed significantly less activity than Prenant’s Schizothoracin on exposure to TDG-supersaturated water. At high supersaturation levels, the CAT activity of Prenant’s Schizothoracin of small size was greater than that of large Prenant’s Schizothoracin. In contrast, small Prenant’s Schizothoracin showed less CAT activity at low TDG levels than did large individuals.


2013 ◽  
Vol 43 (2) ◽  
pp. 163-165 ◽  
Author(s):  
Jinming Wu ◽  
Lei Li ◽  
Hao Du ◽  
Hui Zhang ◽  
Chengyou Wang ◽  
...  

2011 ◽  
Vol 27 (1) ◽  
pp. 59-75 ◽  
Author(s):  
Yongfeng He ◽  
Jianwei Wang ◽  
Sovan Lek ◽  
Wenxuan Cao ◽  
Sithan Lek-Ang

2013 ◽  
Vol 45 (4-5) ◽  
pp. 603-614 ◽  
Author(s):  
C. Corbari ◽  
M. Mancini ◽  
Z. Su ◽  
J. Li

Application of hydrological models for water resources management at large continental river basins is often limited by the scarcity of in situ meteorological forcing data. Remote sensing information provides an alternative to in situ data, with observations that are, in some cases, at higher spatial and temporal resolutions than those available from traditional ground sources. In this work, the water balance equation is solved using precipitation retrieved from Tropical Rainfall Measuring Mission, water storage from Gravity Recovery and Climate Experiment satellite data and ground discharge. Evapotranspiration (ET) is then computed as a residual term of the water balance. Satellite data are compared with ground data to understand to what extent remote sensing observations can be used to improve estimates of the terrestrial water balance at regional scale. ET estimates are also compared with the ET computed from a detailed distributed energy water balance model and with the ET product from the Moderate Resolution Imaging Spectroradiometer Global Evapotranspiration Project. These analyses are performed for the Upper Yangtze River basin (China) in the framework of NRSCC-ESA DRAGON-2 Programme.


2019 ◽  
Vol 11 (19) ◽  
pp. 5300
Author(s):  
Pei Xu ◽  
Yingman Guo ◽  
Bin Fu

Water retention is an important factor in ecosystem services, owing to its relationships with climate and land-cover change; however, quantifying the independent and combined impacts of these variables remains a challenge. We use scenario analysis and the InVEST model to assess individual or combined impacts of climate and land cover on water retention in the Upper Yangtze River Basin. Water retention decreased from 1986 to 2015 at a rate of 2.97 mm/10a in response to increasing precipitation (3.94 mm/10a) and potential evapotranspiration (16.47 mm/10a). The rate of water retention change showed regional variability (from 68 to −18 mm/a), with some eastern regions experiencing an increase and most other regions experiencing a decrease. Farmland showed the highest decrease (10,772 km2), with land mainly converted into forest (58.17%) and shrub land (21.13%) from 2000 to 2015. The impact of climate change (−12.02 mm) on water retention generally was greater than the impact of land cover change (−4.14 mm), at the basin scale. Among 22 climate zones, 77.27% primarily were impacted by climate change; 22.73% primarily were impacted by land cover change. Our results demonstrate that both individualistic and integrated approaches toward climate and vegetation management is necessary to mitigate the impacts of climate change on water resources.


2013 ◽  
Vol 79 (5) ◽  
pp. 799-806 ◽  
Author(s):  
Chunchi Liu ◽  
Xin Gao ◽  
Huanshan Wang ◽  
Huanzhang Liu ◽  
Wenxuan Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document