Advantages to transforming the receiver operating characteristic (ROC) curve into likelihood ratio co-ordinates

2004 ◽  
Vol 23 (14) ◽  
pp. 2257-2266 ◽  
Author(s):  
Nils P. Johnson
Author(s):  
Mario A. Cleves

The area under the receiver operating characteristic (ROC) curve is often used to summarize and compare the discriminatory accuracy of a diagnostic test or modality, and to evaluate the predictive power of statistical models for binary outcomes. Parametric maximum likelihood methods for fitting of the ROC curve provide direct estimates of the area under the ROC curve and its variance. Nonparametric methods, on the other hand, provide estimates of the area under the ROC curve, but do not directly estimate its variance. Three algorithms for computing the variance for the area under the nonparametric ROC curve are commonly used, although ambiguity exists about their behavior under diverse study conditions. Using simulated data, we found similar asymptotic performance between these algorithms when the diagnostic test produces results on a continuous scale, but found notable differences in small samples, and when the diagnostic test yields results on a discrete diagnostic scale.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jiajia Li ◽  
Xiaojing Zhao ◽  
Xueting Li ◽  
Meijiao Lu ◽  
Hongjie Zhang

The clinical course of ulcerative colitis (UC) is featured by remission and relapse, which remains unpredictable. Recent studies revealed that fecal calprotectin (FC) could predict clinical relapse for UC patients in remission, which has not yet been well accepted. To detect the predictive value of FC for clinical relapse in adult UC patients based on updated literature, we carried out a comprehensive electronic search of PubMed, Web of Science, Embase, and the Cochrane Library to identify all eligible studies. Diagnostic accuracy including pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and pooled area under the receiver operating characteristic (AUROC) was calculated using a random effects model. Heterogeneity across studies was assessed by the I2 metric. Sources of heterogeneity were detected using subgroup analysis. Metaregression was used to test potential factors correlated to DOR. Publication bias was assessed using Deek’s funnel plots. In our study, 14 articles enrolling a total of 1110 participants were finally included, and all articles underwent a quality assessment. Pooled sensitivity, specificity, PLR, and NLR with 95% confidence intervals (CIs) were 0.75 (95% CI: 0.70–0.79), 0.77 (95% CI: 0.74–0.80), 3.45 (95% CI: 2.31–5.14), and 0.37 (95% CI: 0.28–0.49) respectively. The area under the summary receiver operating characteristic (sROC) curve was 0.82, and the diagnostic odds ratio was 10.54 (95% CI: 6.16–18.02). Our study suggested that FC is useful in predicting clinical relapse for adult UC patients in remission as a simple and noninvasive marker.


2020 ◽  
Vol 11 (02) ◽  
pp. 261-266 ◽  
Author(s):  
Ramdas S. Ransing ◽  
Neha Gupta ◽  
Girish Agrawal ◽  
Nilima Mahapatro

Abstract Objective Panic disorder (PD) is associated with changes in platelet and red blood cell (RBC) indices. However, the diagnostic or predictive value of these indices is unknown. This study assessed the diagnostic and discriminating value of platelet and RBC indices in patients with PD. Materials and Methods In this cross-sectional study including patients with PD (n = 98) and healthy controls (n = 102), we compared the following blood indices: mean platelet volume (MPV), platelet distribution width (PDW), and RBC distribution width (RDW). The receiver operating characteristic (ROC) curve was used to calculate the area under the ROC curve (AUC), sensitivity, specificity, and likelihood ratio for the platelet and RBC indices. Results Statistically significant increase in PDW (17.01 ± 0.91 vs. 14.8 ± 2.06; p < 0.0001) and RDW (16.56 ± 2.32 vs. 15.12 ± 2.43; p < 0.0001) levels were observed in patients with PD. PDW and mean corpuscular hemoglobin concentration had larger AUC (0.89 and 0.74, respectively) and Youden’s index (0.65 and 0.39, respectively), indicating their higher predictive capacity as well as higher sensitivity in discriminating patients with PD from healthy controls. Conclusion PDW can be considered a “good” diagnostic or predictive marker in patients with PD.


2000 ◽  
Vol 23 (2) ◽  
pp. 134-139 ◽  
Author(s):  
Vinod Shidham ◽  
Dilip Gupta ◽  
Lorenzo M. Galindo ◽  
Marian Haber ◽  
Carolyn Grotkowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document