Quantifying Non‐Covalent Binding Interactions between Tobacco Alkaloids and Cyclodextrin Using Mass Spectrometry and the Application in Cigarette Smoke

2020 ◽  
Vol 5 (22) ◽  
pp. 6658-6665
Author(s):  
Fangling Wu ◽  
Rujiao Yao ◽  
Shaoning Yu ◽  
Keqi Tang ◽  
Yu Xiao ◽  
...  
Author(s):  
AR Gerardi ◽  
WM Coleman

AbstractSeveral approaches were explored to develop a high throughput procedure for relative determination of 14 different carbon-centered free radicals, both acyl and alkylaminocarbonyl type, in cigarette smoke. Two trapping procedures using 3-cyano-2,2,5,5-tetramethyl-1-pyrrolidinyloxy, or 3-cyanoproxyl radical (3-CNP) were designed for this study: a) trapping in solution and b) trapping on a solid support which was a Cambridge filter pad. Fresh whole smoke and vapor phase smoke from mainstream cigarette smoke from Kentucky Reference Cigarettes 2R4F, as partitioned via an unadulterated Cambridge filter pad, were transferred into each trapping system in separate experiments. The 3-CNP coated Cambridge filter pad approach was shown to be superior to the impinger procedure as described in this study. Gas chromatography coupled with mass selective detection (GC-MS) was employed for the first time as an alternate means of detecting several relatively highly concentrated radical adducts. Liquid chromatography tandem mass spectrometry (LC-MS/MS) with precursor ion monitoring and selected ion monitoring (SIM) was used for detecting the large array of radicals, including several not previously reported: formyl, crotonyl, acrolein, aminocarbonyl, and anilinocarbonyl radicals. Relative quantitation was achieved using as external calibration standards of 4-(1-pyrrolidino)benzaldehyde and nicotine. It was determined that the yield of carbon-centered free radicals by reference cigarette 2R4F was approximately 265 nmoles/cigarette at 35 mL puff/60 sec interval/2 sec duration smoking conditions.


2019 ◽  
Vol 6 (2) ◽  
pp. 181832
Author(s):  
Xiu Chen ◽  
Quan Shi ◽  
Xibin Zhou ◽  
Xuezheng Liu

Aldehydes and ketones (AKs) in cigarette smoke are risk to humans and environment. Due to the complexity of itself and the interference of the smoke tar matrix, the aldehydes and ketones in particle phase (AKPs) of mainstream smoke (MSS) and sidestream smoke (SSS) have not been well investigated. In this study, the AKPs of MSS and SSS were derivatized into polar products by reaction with Girard T reagent. The derivatives were isolated rapidly by column chromatography and analysed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Fifteen species of aldehydes and ketones were detected by positive ion electrospray ionization (ESI) FT-ICR MS: O 1–6 , N 1 O 1–4 , N 2 O 1–3 and N 3 O 2–3 . The total number of AKPs obtained by ESI FT-ICR MS in MSS and SSS is about 1100 and 970, respectively. After hydrolysis, the original AKPs were obtained and 63 carbonyls were identified and quantified by gas chromatography–mass spectrometry (GCMS). The nitrogen-containing and high-oxygen AKPs were further characterized by Orbitrap mass spectrometry. Structures of compounds with high relative abundance in the mass spectrum were speculated (e.g. a series of degradants of cembrenediol) by comparison with the results of GCMS.


Sign in / Sign up

Export Citation Format

Share Document