Palladium-Decorated Silicon Nanomesh Fabricated by Nanosphere Lithography for High Performance, Room Temperature Hydrogen Sensing

Small ◽  
2018 ◽  
Vol 14 (10) ◽  
pp. 1703691 ◽  
Author(s):  
Min Gao ◽  
Minkyu Cho ◽  
Hyeuk-Jin Han ◽  
Yeon Sik Jung ◽  
Inkyu Park
Small ◽  
2018 ◽  
Vol 14 (19) ◽  
pp. 1801271 ◽  
Author(s):  
Min Gao ◽  
Minkyu Cho ◽  
Hyeuk-Jin Han ◽  
Yeon Sik Jung ◽  
Inkyu Park

2021 ◽  
Author(s):  
LONG LUO ◽  
Xin Geng ◽  
Shuwei Li ◽  
Jaeyoung Heo ◽  
Yi Peng ◽  
...  

We report a facile method of synthesizing grain-boundary(GB)-rich platinum nanoparticle assembly. GBs are formed between platinum nanoparticles during their random collision and attachment in solution driven by water electrolysis. The GB-rich nanoparticle assembly exhibits ~400-fold higher catalytic hydrogen oxidation rate than platinum nanoparticles before assembly, enabling catalytic hydrogen sensing at room temperature without external heating. Our sensor also demonstrates fast response/recovery (~7 s at >1% H2), nearly no signal variation during a 280-hour-long stability test, and high selectivity toward hydrogen over 36 interference gases. Furthermore, this sensor can be easily fabricated from commercial thermometers at a low cost (< $5 per unit). Theoretical calculation results reveal that the high performance of GB-rich platinum nanoparticle assembly arises from tensile strain at the GBs.


Author(s):  
Sotirios Christodoulou ◽  
Francesco Di Stasio ◽  
Santanu Pradhan ◽  
Inigo Ramiro ◽  
Yu Bi ◽  
...  

2020 ◽  
Vol 40 (8) ◽  
pp. 676-684
Author(s):  
Niping Dai ◽  
Junkun Tang ◽  
Manping Ma ◽  
Xiaotian Liu ◽  
Chuan Li ◽  
...  

AbstractStar-shaped arylacetylene resins, tris(3-ethynyl-phenylethynyl)methylsilane, tris(3-ethynyl-phenylethynyl) phenylsilane, and tris (3-ethynyl-phenylethynyl) silane (TEPHS), were synthesized through Grignard reaction between 1,3-diethynylbenzene and three types of trichlorinated silanes. The chemical structures and properties of the resins were characterized by means of nuclear magnetic resonance, fourier-transform infrared spectroscopy, Haake torque rheomoter, differential scanning calorimetry, dynamic mechanical analysis, mechanical test, and thermogravimetric analysis. The results show that the melt viscosity at 120 °C is lower than 150 mPa⋅s, and the processing windows are as wide as 60 °C for the resins. The resins cure at the temperature as low as 150 °C. The good processabilities make the resins to be suitable for resin transfer molding. The cured resins exhibit high flexural modulus and excellent heat-resistance. The flexural modulus of the cured TEPHS at room temperature arrives at as high as 10.9 GPa. Its temperature of 5% weight loss (Td5) is up to 697 °C in nitrogen. The resins show the potential for application in fiber-reinforced composites as high-performance resin in the field of aviation and aerospace.


Author(s):  
Hien Duy Mai ◽  
Sangmin Jeong ◽  
Tri Khoa Nguyen ◽  
Jong-Sang Youn ◽  
Seungbae Ahn ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1692
Author(s):  
Emmanuel K. Ampadu ◽  
Jungdong Kim ◽  
Eunsoon Oh

We fabricated a lateral photovoltaic device for use as infrared to terahertz (THz) detectors by chemically depositing PbS films on titanium substrates. We discussed the material properties of PbS films grown on glass with varying deposition conditions. PbS was deposited on Ti substrates and by taking advantage of the Ti/PbS Schottky junction, we discussed the photocurrent transients as well as the room temperature spectrum response measured by Fourier transform infrared (FTIR) spectrometer. Our photovoltaic PbS device operates at room temperature for wavelength ranges up to 50 µm, which is in the terahertz region, making the device highly applicable in many fields.


Sign in / Sign up

Export Citation Format

Share Document