Challenges in developing confidence intervals on modal parameters estimated for large civil infrastructure with stochastic subspace identification

2009 ◽  
pp. n/a-n/a ◽  
Author(s):  
E. Peter Carden ◽  
Akira Mita
2017 ◽  
Vol 24 (20) ◽  
pp. 4781-4796 ◽  
Author(s):  
Wenchao Li ◽  
Viet-Hung Vu ◽  
Zhaoheng Liu ◽  
Marc Thomas ◽  
Bruce Hazel

This paper presents a method for the extraction of modal parameters for identification of time-varying systems using Data-Driven Stochastic Subspace Identification (SSI-DATA). In practical applications of SSI-DATA, both the modal parameters and computational ones are mixed together in the identified results. In order to differentiate the structural ones from computational ones, a new method based on the eigen-decomposition of the state matrix constructed in SSI-DATA is proposed. The efficiency of the proposed method is demonstrated through numerical simulation of a lumped-mass system and experimental test of a moving robot for extracting excited natural frequencies of the system.


2021 ◽  
Vol 11 (23) ◽  
pp. 11432
Author(s):  
Xiangying Guo ◽  
Changkun Li ◽  
Zhong Luo ◽  
Dongxing Cao

A method of modal parameter identification of structures using reconstructed displacements was proposed in the present research. The proposed method was developed based on the stochastic subspace identification (SSI) approach and used reconstructed displacements of measured accelerations as inputs. These reconstructed displacements suppressed the high-frequency component of measured acceleration data. Therefore, in comparison to the acceleration-based modal analysis, the operational modal analysis obtained more reliable and stable identification parameters from displacements regardless of the model order. However, due to the difficulty of displacement measurement, different types of noise interferences occurred when an acceleration sensor was used, causing a trend term drift error in the integral displacement. A moving average low-frequency attenuation frequency-domain integral was used to reconstruct displacements, and the moving time window was used in combination with the SSI method to identify the structural modal parameters. First, measured accelerations were used to estimate displacements. Due to the interference of noise and the influence of initial conditions, the integral displacement inevitably had a drift term. The moving average method was then used in combination with a filter to effectively eliminate the random fluctuation interference in measurement data and reduce the influence of random errors. Real displacement results of a structure were obtained through multiple smoothing, filtering, and integration. Finally, using reconstructed displacements as inputs, the improved SSI method was employed to identify the modal parameters of the structure.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Chen Wang ◽  
Minghui Hu ◽  
Zhinong Jiang ◽  
Yanfei Zuo ◽  
Zhenqiao Zhu

Abstract For the quantitative dynamic analysis of aero gas turbines, accurate modal parameters must be identified. However, the complicated structure of thin-walled casings may cause false mode identification and mode absences if conventional methods are used, which makes it more difficult to identify the modal parameters. A modal parameter identification method based on improved covariance-driven stochastic subspace identification (covariance-driven SSI) is proposed. The ability to reduce the number of mode absences and the solving stability are improved by a covariance matrix dimension control method. Meanwhile, the number of false mode identification is reduced via a false mode elimination method. In addition, the real mode complementation and the excitation frequency mode screening can be realized by a multispeed excitation method. The numerical results of a typical rotor model and measured data of an aero gas turbine validated the proposed method.


2016 ◽  
Vol 16 (09) ◽  
pp. 1550059 ◽  
Author(s):  
Ladislao R. Ticona Melo ◽  
Ramon S. Y. R. C. Silva ◽  
Tulio N. Bittencourt ◽  
Luciano M. Bezerra

Obtaining the dynamic parameters of a bridge is essential to validation of the model used in the dynamic analysis of the bridge. In order to implement methodologies for damage detection, many experimental modal identification tests are performed for estimating the modal parameters of structures, including the natural frequencies and mode shapes. This paper presents an experimental and numerical study for finding the modal parameters of an aluminum model built to scale of a real railway bridge. Although, so far no test has been performed on the real railway bridge for comparison with the scale model, this paper seeks to apply the scale model experimental and numerical techniques for obtaining the dynamic parameters of the bridge. The software SAP2000 was used for the numerical analyses and for the experimental aspect, the circle fit and the stochastic subspace identification methods are used. Numerical and experimental results showed good correlation.


2021 ◽  
Vol 54 (3-4) ◽  
pp. 457-464
Author(s):  
Yulin Zhou ◽  
Xulei Jiang ◽  
Mingjin Zhang ◽  
Jinxiang Zhang ◽  
Hao Sun ◽  
...  

In the wind tunnel test of a long-span bridge model, to ensure that the dynamic characteristics of the model can satisfy the test design requirements, it is particularly important to accurately identify the modal parameters of the model. First, the stochastic subspace identification algorithm was used to analyze the modal parameters of the model in the wind tunnel test; then, Grubbs criterion was introduced to effectively eliminate outliers in the damping ratio matrix. Stochastic subspace identification algorithm with Grubbs criterion improved the accuracy of the modal parameter identification and the ability to determine system matrix order and prevented the modal omissions caused by determining the stable condition of the damping ratio in the stability diagram. Finally, Oujiang Bridge was used as an example to verify the stochastic subspace identification algorithm with Grubbs criterion and compare with the results of the finite element method. The example shows that the improved method can be effectively applied to the modal parameter identification of bridges.


Sign in / Sign up

Export Citation Format

Share Document