scholarly journals Functional Involvements of Heterogeneous Nuclear Ribonucleoprotein A1 in Smooth Muscle Differentiation from Stem Cells In Vitro and In Vivo

Stem Cells ◽  
2013 ◽  
Vol 31 (5) ◽  
pp. 906-917 ◽  
Author(s):  
Yuan Huang ◽  
Luyang Lin ◽  
Xiaotian Yu ◽  
Guanmei Wen ◽  
Xiangyuan Pu ◽  
...  
2019 ◽  
Vol 16 (12) ◽  
pp. 1874-1884
Author(s):  
Dongyi Peng ◽  
Huixing Yuan ◽  
Tianshu Liu ◽  
Tianyu Wang ◽  
Amanda B. Reed-Maldonado ◽  
...  

1996 ◽  
Vol 16 (5) ◽  
pp. 2350-2360 ◽  
Author(s):  
E F Michelotti ◽  
G A Michelotti ◽  
A I Aronsohn ◽  
D Levens

The CT element is a positively acting homopyrimidine tract upstream of the c-myc gene to which the well-characterized transcription factor Spl and heterogeneous nuclear ribonucleoprotein (hnRNP) K, a less well-characterized protein associated with hnRNP complexes, have previously been shown to bind. The present work demonstrates that both of these molecules contribute to CT element-activated transcription in vitro. The pyrimidine-rich strand of the CT element both bound to hnRNP K and competitively inhibited transcription in vitro, suggesting a role for hnRNP K in activating transcription through this single-stranded sequence. Direct addition of recombinant hnRNP K to reaction mixtures programmed with templates bearing single-stranded CT elements increased specific RNA synthesis. If hnRNP K is a transcription factor, then interactions with the RNA polymerase II transcription apparatus are predicted. Affinity columns charged with recombinant hnRNP K specifically bind a component(s) necessary for transcription activation. The depleted factors were biochemically complemented by a crude TFIID phosphocellulose fraction, indicating that hnRNP K might interact with the TATA-binding protein (TBP)-TBP-associated factor complex. Coimmunoprecipitation of a complex formed in vivo between hnRNP K and epitope-tagged TBP as well as binding in vitro between recombinant proteins demonstrated a protein-protein interaction between TBP and hnRNP K. Furthermore, when the two proteins were overexpressed in vivo, transcription from a CT element-dependent reporter was synergistically activated. These data indicate that hnRNP K binds to a specific cis element, interacts with the RNA polymerase II transcription machinery, and stimulates transcription and thus has all of the properties of a transcription factor.


2021 ◽  
Author(s):  
Min Xu ◽  
Yu Chen ◽  
Hao-Yan Yuan ◽  
Yue-Hai Shen ◽  
Jia-Yao Xiang ◽  
...  

Abstract HBV infection is a major global health burden that needs novel immunotherapeutic approaches. Herein, we show that heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is a novel drug target for HBV infection. We reveal the new target with highly selective probes of PAC5, a natural sesquiterpene derivative. PAC5 show potent anti-HBV activity in vivo and in vitro. Further studies on its mode of action indicate that PAC5 binds to the residue Asp49 and a deep groove in the RNA recognition motif1 (RRM1) region of hnRNPA2B1. PAC5-bound hnRNPA2B1 is activated, dimerized, and translocated to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to the production of type I interferons (IFNs). Furthermore, PAC5 also suppresses other viral replications, such as SARS-CoV-2 and vesicular stomatitis virus (VSV). Our results indicate that PAC5 is the first small molecule agonist of hnRNPA2B1, a drug target potentially valid for broad-spectrum viral infections, providing a novel strategy for viral immunotherapy.


2012 ◽  
Vol 32 (3) ◽  
pp. 730-744 ◽  
Author(s):  
Qingzhong Xiao ◽  
Anna E. Pepe ◽  
Gang Wang ◽  
Zhenling Luo ◽  
Li Zhang ◽  
...  

1994 ◽  
Vol 14 (1) ◽  
pp. 518-533 ◽  
Author(s):  
M Huang ◽  
J E Rech ◽  
S J Northington ◽  
P F Flicker ◽  
A Mayeda ◽  
...  

A series of in vitro protein-RNA binding studies using purified native (C1)3C2 and (A2)3B1 tetramers, total soluble heterogeneous nuclear ribonucleoprotein (hnRNP), and pre-mRNA molecules differing in length and sequence have revealed that a single C-protein tetramer has an RNA site size of 230 to 240 nucleotides (nt). Two tetramers bind twice this RNA length, and three tetramers fold monoparticle lengths of RNA (700 nt) into a unique 19S triangular complex. In the absence of this unique structure, the basic A- and B-group proteins bind RNA to form several different artifactual structures which are not present in preparations of native hnRNP and which do not function in hnRNP assembly. Three (A2)3B1 tetramers bind the 19S complex to form a 35S assembly intermediate. Following UV irradiation to immobilize the C proteins on the packaged RNA, the 19S triangular complex is recovered as a remnant structure from both native and reconstituted hnRNP particles. C protein-RNA complexes composed of three, six, or nine tetramers (one, two, or three triangular complexes) nucleate the stoichiometric assembly of monomer, dimer, and trimer hnRNP particles. The binding of C-protein tetramers to RNAs longer than 230 nt is through a self-cooperative combinatorial mode. RNA packaged in the 19S complex and in 40S hnRNP particles is efficiently spliced in vitro. These findings demonstrate that formation of the triangular C protein-RNA complex is an obligate first event in the in vitro and probably the in vivo assembly the 40S hnRNP core particle, and they provide insight into the mechanism through which the core proteins package 700-nt increments of RNA. These findings also demonstrate that unless excluded by other factors, the C proteins are likely to be located along the length of nascent transcripts.


Sign in / Sign up

Export Citation Format

Share Document