scholarly journals Comparison and evolutionary analysis of Brassica nucleotide binding site leucine rich repeat (NLR) genes and importance for disease resistance breeding

2020 ◽  
Author(s):  
Yueqi Zhang ◽  
David Edwards ◽  
Jacqueline Batley
Genome ◽  
1998 ◽  
Vol 41 (6) ◽  
pp. 782-788 ◽  
Author(s):  
W Spielmeyer ◽  
M Robertson ◽  
N Collins ◽  
D Leister ◽  
P Schulze-Lefert ◽  
...  

In this study, resistance gene analogs (RGAs) which were isolated from monocot crop species (wheat, barley, maize and rice) and contained conserved sequence motifs found within the nucleotide binding site - leucine rich repeat (NBS-LRR) class of resistance genes, were used to assess their distribution in the wheat genome. The RGAs showed 30-70% amino acid identity to a previously isolated monocot NBS-LRR sequence from the Cre3 locus for cereal cyst nematode (CCN) resistance in wheat. We used the RGAs as probes to identify and map loci in wheat using recombinant inbred lines of an international Triticeae mapping family. RGA loci mapped across all seven homoeologous chromosome groups of wheat. This study demonstrated that the RGA mapping approach provides potential entry points toward identifying resistance gene candidates in wheat.Key words: wheat, disease resistance genes, nucleotide binding site, leucine rich repeat, resistance gene analogs.


Genome ◽  
2013 ◽  
Vol 56 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Sandip M. Kale ◽  
Varsha C. Pardeshi ◽  
Vitthal T. Barvkar ◽  
Vidya S. Gupta ◽  
Narendra Y. Kadoo

Plants employ different disease-resistance genes to detect pathogens and to induce defense responses. The largest class of these genes encodes proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains. To identify the putative NBS–LRR encoding genes from linseed, we analyzed the recently published linseed genome sequence and identified 147 NBS–LRR genes. The NBS domain was used for phylogeny construction and these genes were classified into two well-known families, non-TIR (CNL) and TIR related (TNL), and formed eight clades in the neighbor-joining bootstrap tree. Eight different gene structures were observed among these genes. An unusual domain arrangement was observed in the TNL family members, predominantly in the TNL-5 clade members belonging to class D. About 12% of the genes observed were linseed specific. The study indicated that the linseed genes probably have an ancient origin with few progenitor genes. Quantitative expression analysis of five genes showed inducible expression. The in silico expression evidence was obtained for a few of these genes, and the expression was not correlated with the presence of any particular regulatory element or with unusual domain arrangement in those genes. This study will help in understanding the evolution of these genes, the development of disease resistant varieties, and the mechanism of disease resistance in linseed.


2011 ◽  
Vol 193 (4) ◽  
pp. 1049-1063 ◽  
Author(s):  
Jia-Xing Yue ◽  
Blake C. Meyers ◽  
Jian-Qun Chen ◽  
Dacheng Tian ◽  
Sihai Yang

FEBS Journal ◽  
2012 ◽  
Vol 279 (13) ◽  
pp. 2431-2443 ◽  
Author(s):  
Ying Cheng ◽  
Xiaoyu Li ◽  
Haiyang Jiang ◽  
Wei Ma ◽  
Weiyun Miao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document