scholarly journals Oxygen‐derived free radicals: Production, biological importance, bioimaging, and analytical detection with responsive luminescent nanoprobes

View ◽  
2021 ◽  
pp. 20200139
Author(s):  
Jianping Liu ◽  
Miaomiao Wu ◽  
Run Zhang ◽  
Zhi Ping Xu
Microsurgery ◽  
2002 ◽  
Vol 22 (3) ◽  
pp. 108-113 ◽  
Author(s):  
Rolf Büttemeyer ◽  
Andreas W. Philipp ◽  
Julian W. Mall ◽  
Bixia Ge ◽  
Frieder W. Scheller ◽  
...  

Author(s):  
Na Gao ◽  
Jing Jing ◽  
Hengzhi Zhao ◽  
Yazhou Liu ◽  
Chunlei Yang ◽  
...  

Oxidative stress plays an important role in the development of inflammatory diseases including allergy, heart disease, diabetes and cancer. Nanomaterials-mediated antioxidant therapy is regarded as a promising strategy to treat...


1995 ◽  
Vol 80 (6) ◽  
pp. 1163-1167
Author(s):  
Kyung W. Park ◽  
Hai B. Dai ◽  
Edward Lowenstein ◽  
Amir Darvish ◽  
Frank W. Sellke

2002 ◽  
Vol 11 (6) ◽  
pp. 543-551 ◽  
Author(s):  
Caryl Goodyear-Bruch ◽  
Janet D. Pierce

Oxygen-derived free radicals play an important role in the development of disease in critically ill patients. Normally, oxygen free radicals are neutralized by antioxidants such as vitamin E or enzymes such as superoxide dismutase. However, in patients who require intensive care, oxygen free radicals become a problem when either a decrease in the removal or an overproduction of the radicals occurs. This oxidative stress and the damage due to it have been implicated in many diseases in critically ill patients. Many drugs and treatments now being investigated are directed toward preventing the damage from oxidative stress. The formation of reactive oxygen species, the damage caused by them, and the body’s defense system against them are reviewed. New interventions are described that may be used in critically ill patients to prevent or treat oxidative damage.


1997 ◽  
Vol 272 (2) ◽  
pp. H701-H705 ◽  
Author(s):  
H. Ishimoto ◽  
M. Natori ◽  
M. Tanaka ◽  
T. Miyazaki ◽  
T. Kobayashi ◽  
...  

We investigated the involvement of oxygen-derived free radicals in the pathogenesis of the intrauterine growth retardation (IUGR) induced in Sprague-Dawley rats by ischemia-reperfusion. On day 17 of gestation, rats received saline, superoxide dismutase (SOD, 50,000 U/kg), catalase (CAT, 50,000 U/kg), or SOD + CAT subcutaneously 1 h before induction of 30 min of ischemia of the right uterine horn. On day 21 the placental level of lipid peroxides was significantly increased (P < 0.001 vs. sham-operated group) and IUGR was induced (P < 0.001 vs. left horn) in the saline-treated group n = 6). Pretreatment with SOD + CAT (n = 6) significantly inhibited the increase in placental lipid peroxides and prevented IUGR. The effect of ischemia-reperfusion on uterine blood flow, with or without pretreatment with radical scavengers, was investigated in separate experiments by laser-Doppler flowmetry. The induction of hypoperfusion 3 h after ischemia (blood flow -40 +/- 5%, n = 6, P < 0.05) was blocked by pretreatment with SOD + CAT (n = 6). Results indicate that oxygen-derived free radicals may be important in the development of postischemic uteroplacental hypoperfusion and of ischemia-reperfusion-induced IUGR in the rat.


Sign in / Sign up

Export Citation Format

Share Document