Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: a composite-based analysis with the Weather Research and Forecasting model over Horns Rev

Wind Energy ◽  
2014 ◽  
Vol 18 (3) ◽  
pp. 559-566 ◽  
Author(s):  
Pedro A. Jiménez ◽  
Jorge Navarro ◽  
Ana M. Palomares ◽  
Jimy Dudhia
Author(s):  
Toshiki Chujo ◽  
Yoshimasa Minami ◽  
Tadashi Nimura ◽  
Shigesuke Ishida

The experimental proof of the floating wind turbine has been started off Goto Islands in Japan. Furthermore, the project of floating wind farm is afoot off Fukushima Prof. in north eastern part of Japan. It is essential for realization of the floating wind farm to comprehend its safety, electric generating property and motion in waves and wind. The scale model experiments are effective to catch the characteristic of floating wind turbines. Authors have mainly carried out scale model experiments with wind turbine models on SPAR buoy type floaters. The wind turbine models have blade-pitch control mechanism and authors focused attention on the effect of blade-pitch control on both the motion of floater and fluctuation of rotor speed. In this paper, the results of scale model experiments are discussed from the aspect of motion of floater and the effect of blade-pitch control.


Author(s):  
Yougang Tang ◽  
Jun Hu ◽  
Liqin Liu

The wind resources for ocean power generation are mostly distributed in sea areas with the distance of 5–50km from coastline, whose water depth are generally over 20m. To improve ocean power output and economic benefit of offshore wind farm, it is necessary to choose floating foundation for offshore wind turbine. According to the basic data of a 600kW wind turbine with a horizontal shaft, the tower, semi-submersible foundation and mooring system are designed in the 60-meter-deep sea area. Precise finite element models of the floating wind turbine system are established, including mooring lines, floating foundation, tower and wind turbine. Dynamic responses for the floating foundation of offshore wind turbine are investigated under wave load in frequency domain.


Author(s):  
Bryan Nelson ◽  
Yann Quéméner

This study evaluated, by time-domain simulations, the fatigue lives of several jacket support structures for 4 MW wind turbines distributed throughout an offshore wind farm off Taiwan’s west coast. An in-house RANS-based wind farm analysis tool, WiFa3D, has been developed to determine the effects of the wind turbine wake behaviour on the flow fields through wind farm clusters. To reduce computational cost, WiFa3D employs actuator disk models to simulate the body forces imposed on the flow field by the target wind turbines, where the actuator disk is defined by the swept region of the rotor in space, and a body force distribution representing the aerodynamic characteristics of the rotor is assigned within this virtual disk. Simulations were performed for a range of environmental conditions, which were then combined with preliminary site survey metocean data to produce a long-term statistical environment. The short-term environmental loads on the wind turbine rotors were calculated by an unsteady blade element momentum (BEM) model of the target 4 MW wind turbines. The fatigue assessment of the jacket support structure was then conducted by applying the Rainflow Counting scheme on the hot spot stresses variations, as read-out from Finite Element results, and by employing appropriate SN curves. The fatigue lives of several wind turbine support structures taken at various locations in the wind farm showed significant variations with the preliminary design condition that assumed a single wind turbine without wake disturbance from other units.


Author(s):  
Laurens Alblas ◽  
Corine de Winter

Abstract Recently, wind farm development has gained more traction in Asian countries such as Taiwan, which are seismically active. Compared to Europe, the offshore wind structures need to be designed for these additional extreme environmental conditions. For monopiles, these calculations can typically be performed in an integrated way in the wind turbine load calculation, but for jackets the superelement (SE) approach remains preferred. At the time of writing different approaches are being applied in the industry to apply the SE approach for seismic time domain analysis. This work explains and compares three different methods, based on calculations performed in offshore strength assessment tool Sesam and aeroelastic tool BHawC. When including additional interface nodes at the foundation model bottom into the SE to which the seismic accelerations can be applied in BHawC similarly as in the re-tracking run in Sesam, the results between BHawC and Sesam are nearidentical. Using a normal SE, which only includes an interface node for the connection to the wind turbine tower bottom, and including the response due to seismic displacements into the SE load file gives a match between BHawC and Sesam, and closely matches the results of the case with additional interface nodes. Doing the same but only including the dynamic response of the interface point relative to a frame of reference moving with the rigid body motions as caused by the seismic accelerations into the SE load file, significant differences occur. This is due to the lack of the loading effect of rigid body motions. The same conclusions on how these methods compare can be drawn when using different wind and wave cases. The presented results give insights into the differences between the methods and how the choice of method may influence the results.


Author(s):  
Eiji Hirokawa ◽  
Hideyuki Suzuki ◽  
Shinichiro Hirabayashi ◽  
Minon Muratake

In off-shore wind turbine, it is difficult to determine the risk of accident caused by the mooring destruction through experiment. In this paper, the authors discuss the risk, with the case of a drifting ship wanders into the wind farm. In the design of a floating offshore wind turbine (FOWT), drift of a FOWT is considered as a serious failure mode and the mooring system must be designed to avoid the failure. The failure of mooring line is not initiated just by extreme environmental load but can be initiated by collision with a drifting ship, which enters the wind farm. This phenomenon is difficult to investigate by a tank experiment. So far, little knowledge exists about the phenomenon. In this research, a simulator to reproduce the collision process of a FOWT and a drift ship and a progressive drift of FOWTs in a wind farm was developed. Using this simulator and statistics of drift incidents of a ship, a procedure to evaluate risk of progressive drifts in a wind farm was established. In that case, second accident that a wind turbine which has started drifting caused by the drifting ship collides with one another wind turbine is expected. As a result, the risk mainly depends on the risk of drifting caused by a large displaced ship. In addition, the risk partly depends on the arrangement of wind farm.


Sign in / Sign up

Export Citation Format

Share Document