scholarly journals Warm island effect observed in lake areas of the Badain Jaran Desert , China

Weather ◽  
2021 ◽  
Author(s):  
Liqiang Zhao ◽  
Xinran Yu ◽  
Wenjia Zhang ◽  
Xiaoyan Liang ◽  
Nai'ang Wang ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Xiaoyan Liang ◽  
Liqiang Zhao ◽  
Zhenmin Niu ◽  
Xingbin Xu ◽  
Nan Meng ◽  
...  

The Badain Jaran Desert (BJD) is characterized by the coexistence of over 110 perennial lakes and thousands of megadunes in its southeast part. Unlike the cold island effect, we found a special phenomenon of the warm island effect in the lake group region of the BJD. However, the concept and formation mechanism remains unclear. In this study, based on observations of land surface processes in the area, we first used the daily mean temperature from 23 automated meteorological stations from 2010 to 2017 to calculate the mean daily temperature (T) ≥ 0 °C, T ≥ 10 °C accumulated temperature and negative accumulated temperature. Furthermore, using the net radiation from two eddy covariance measurement systems, characteristics of the net radiation between the lake and megadunes were analyzed. When comparing observed data in the lake group region to surrounding areas, accumulated temperature from all three meteorological stations in the lake group region were higher; the duration days of T ≥ 0 °C and T ≥ 10 °C were longer, whereas duration days of negative accumulated temperature were shorter. In addition, the initial dates for T ≥ 0 °C and T ≥ 10 °C accumulated temperature were earlier, whereas the end dates were delayed. Variations in heat were observed between stations in the lake group region that may be reflective of microclimate environments between lakes. The authors relate warm island formation in the BJD lake group region to (1) the heat carried by groundwater recharge to the desert lake groups has a great impact on the local temperature. (2) Net heat radiation to the atmosphere through sensible heat flux owing to sparse vegetation in the desert areas. Hence, heat resources are richer in the lake group region. This study aims to improve our understanding of the warm island effect from a comprehensive analysis of its intensity and distribution pattern around the lake group region as compared to its surroundings. In addition, the results from this study will provide a scientific basis for determining the source of lake water in the BJD.



2020 ◽  
Vol 57 ◽  
pp. 101066
Author(s):  
Xiaoyan Liang ◽  
Liqiang Zhao ◽  
Xingbin Xu ◽  
Zhenmin Niu ◽  
Wenjia Zhang ◽  
...  


Author(s):  
Qijiao Xie ◽  
Jing Li

As a nature-based solution, development of urban blue-green spaces is widely accepted for mitigating the urban heat island (UHI) effect. It is of great significance to determine the main driving factors of the park cool island (PCI) effect for optimizing park layout and achieving a maximum cooling benefit of urban parks. However, there have been obviously controversial conclusions in previous studies due to varied case contexts. This study was conducted in Wuhan, a city with high water coverage, which has significant differences in context with the previous case cities. The PCI intensity and its correlation with park characteristics were investigated based on remote sensing data. The results indicated that 36 out of 40 urban parks expressed a PCI effect, with a PCI intensity of 0.08~7.29 °C. As expected, larger parks with enough width had stronger PCI intensity. An increased density of hardened elements in a park could significantly weaken PCI effect. Noticeably, in this study, water bodies in a park contributed the most to the PCI effect of urban parks, while the vegetated areas showed a negative impact on the PCI intensity. It implied that in a context with higher water coverage, the cooling effect of vegetation was weakened or even masked by water bodies, due to the interaction effect of different variables on PCI intensity.



2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.





Author(s):  
Joseph Frazer Banda ◽  
Qin Zhang ◽  
Linqiang Ma ◽  
Lixin Pei ◽  
Zerui Du ◽  
...  


2014 ◽  
Vol 123 ◽  
pp. 87-95 ◽  
Author(s):  
Gudina Legese Feyisa ◽  
Klaus Dons ◽  
Henrik Meilby






Sign in / Sign up

Export Citation Format

Share Document