Nitrogen removal from domestic wastewater in a novel hybrid anoxic‐oxic biofilm reactor at different reflux ratios

2020 ◽  
Author(s):  
Vladimir E. Burov ◽  
Jianzheng Li ◽  
Jia Meng
Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Yu Huang ◽  
Yongzhen Peng ◽  
Donghui Huang ◽  
Jiarui Fan ◽  
Rui Du

A partial-denitrification coupling with anaerobic ammonium oxidation (anammox) process (PD/A) in a continuous-flow anoxic/oxic (A/O) biofilm reactor was developed to treat carbon-limited domestic wastewater (ammonia (NH4+-N) of 55 mg/L and chemical oxygen demand (COD) of 148 mg/L in average) for about 200 days operation. Satisfactory NH4+-N oxidation efficiency above 95% was achieved with rapid biofilm formation in the aerobic zone. Notably, nitrite (NO2−-N) accumulation was observed in the anoxic zone, mainly due to the insufficient electron donor for complete nitrate (NO3−-N) reduction. The nitrate-to-nitrite transformation ratio (NTR) achieved was as high as 64.4%. After the inoculation of anammox-enriched sludge to anoxic zones, total nitrogen (TN) removal was significantly improved from 37.3% to 78.0%. Anammox bacteria were effectively retained in anoxic biofilm utilizing NO2−-N produced via the PD approach and NH4+-N in domestic wastewater, with the relative abundance of 5.83% for stable operation. Anammox pathway contributed to TN removal by a high level of 38%. Overall, this study provided a promising method for mainstream nitrogen removal with low energy consumption and organic carbon demand.


2014 ◽  
Vol 955-959 ◽  
pp. 2318-2321
Author(s):  
Dong Yuan

The objective of this work was to evaluate the performances of A lab-scale innovative sequencing batch biofilm reactor (SBBR) to treat domestic wastewater,in which a acryl cylinder (height 200 mm, diameter 70 mm) was equipped and many fiber threads were attached to the surface of the cylinder as the bacteria carrier. No time and volume for settling was required in this system. After one year’s operation, each parameter achieved the wastewater discharged criterion in 2 cycles (4 h). It was found that COD removal efficiency was up to 90% in 3 h, and ammonium nitrogen concentration approached the least value; total nitrogen removal efficiency reached 55%-71%. In this SBBR system simultaneous nitrification and denitrification was completed at the end of 2 cycles.


2011 ◽  
pp. 285-296
Author(s):  
M. Ruscalleda Beylier ◽  
M.D. Balaguer ◽  
J. Colprim ◽  
C. Pellicer-Nàcher ◽  
B.-J. Ni ◽  
...  

2021 ◽  
Author(s):  
Chao Jin ◽  
Jiali Xing ◽  
Zijian Chen ◽  
Yabing Meng ◽  
Fuqiang Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document