A comparison of line-transect distance sampling methods for estimating gopher tortoise population densities

2015 ◽  
Vol 39 (4) ◽  
pp. 804-812 ◽  
Author(s):  
Traci D. Castellón ◽  
Betsie B. Rothermel ◽  
Saif Z. Nomani
2014 ◽  
Vol 5 (11) ◽  
pp. 1180-1191 ◽  
Author(s):  
Mary Louise Burt ◽  
David L. Borchers ◽  
Kurt J. Jenkins ◽  
Tiago A. Marques

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5066 ◽  
Author(s):  
Zoi Thanopoulou ◽  
Maria Sini ◽  
Konstantinos Vatikiotis ◽  
Christos Katsoupis ◽  
Panayiotis G. Dimitrakopoulos ◽  
...  

Background Underwater visual surveys (UVSs) for monitoring fish communities are preferred over fishing surveys in certain habitats, such as rocky or coral reefs and seagrass beds and are the standard monitoring tool in many cases, especially in protected areas. However, despite their wide application there are potential biases, mainly due to imperfect detectability and the behavioral responses of fish to the observers. Methods The performance of two methods of UVSs were compared to test whether they give similar results in terms of fish population density, occupancy, species richness, and community composition. Distance sampling (line transects) and plot sampling (strip transects) were conducted at 31 rocky reef sites in the Aegean Sea (Greece) using SCUBA diving. Results Line transects generated significantly higher values of occupancy, species richness, and total fish density compared to strip transects. For most species, density estimates differed significantly between the two sampling methods. For secretive species and species avoiding the observers, the line transect method yielded higher estimates, as it accounted for imperfect detectability and utilized a larger survey area compared to the strip transect method. On the other hand, large-scale spatial patterns of species composition were similar for both methods. Discussion Overall, both methods presented a number of advantages and limitations, which should be considered in survey design. Line transects appear to be more suitable for surveying secretive species, while strip transects should be preferred at high fish densities and for species of high mobility.


Author(s):  
Lora L Smith ◽  
Jennifer M. Howze ◽  
Jennifer S. Staiger ◽  
Eric R. Sievers ◽  
Deborah Burr ◽  
...  

The gopher frog Lithobates capito is one of the most terrestrial frogs in the southeastern U.S. and often inhabits gopher tortoise burrows Gopherus polyphemus outside of the breeding season. Gopher frog populations have declined, and the species is under review for listing as threatened or endangered under the U.S. Endangered Species Act. Much of our knowledge on the status of gopher frogs is based on detections of larvae at breeding wetlands, which can be challenging due to environmental variability and provides no information on the terrestrial life stages of the species. Therefore, an alternative method is called for. We recorded observations of gopher frogs during gopher tortoise surveys at four conservation lands in Florida and used line transect distance sampling to estimate frog abundance. We also recorded burrow size, incidence of frog co-occupancy with tortoises, and distance from frog-occupied burrows to breeding wetlands. We observed 274 gopher frogs in 1,097 tortoise burrows at the four sites. The proportion of burrows occupied by gopher frogs among sites ranged from 0.17 to 0.25. Gopher frog abundance in tortoise burrows was 742 (512–1,076 95% CL) at Etoniah Creek State Forest, 465 (352–615) at Ft. White Wildlife Environmental Area, 411(283–595) at Mike Roess Gold Head Branch State Park, and 134 (97–186) at Watermelon Pond Wildlife Environmental Area. We observed up to four frogs in a single burrow. The proportion of frogs detected in burrows occupied by a gopher tortoise ranged from 0.46 to 0.79 among sites, and overall, gopher frogs preferred burrows occupied by tortoises over unoccupied burrows (χ 2 = 15.875, df=3, p = 0.001). Gopher frogs used burrows from 7 to 43 cm in width; mean width of frog-occupied burrows did not differ from that of unoccupied burrows ( F 1,3 = 0.0492, p = 0.8245). Distance from frog-occupied tortoise burrows to the nearest breeding wetland ranged from 141 to 3,402 m. Our data on gopher frogs collected in conjunction with gopher tortoise monitoring efforts using line transect distance sampling and burrow cameras provided novel information on frog abundance in their terrestrial habitat and required no additional effort. However, the extent to which frogs use tortoise burrows relative to other available refuges (small mammal burrows, stumps, or other structures) is unknown, thus our estimates should be considered conservative. We suggest that terrestrial abundance estimates for gopher frogs can complement efforts to monitor breeding activity to provide a more comprehensive means of monitoring population trends in this cryptic species.


2018 ◽  
Vol 10 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Jennifer M. Howze ◽  
Lora L. Smith

Abstract Gopher tortoise Gopherus polyphemus populations have declined by as much as 80% over the past century, primarily as a result of habitat loss. In 2006, the eastern population of the gopher tortoise was petitioned for federal listing as threatened. In response, a Candidate Conservation Agreement was developed for the gopher tortoise. A Candidate Conservation Agreement is a voluntary agreement between the U.S. Fish and Wildlife Service and other interested parties to address the conservation needs of a species before it becomes federally listed and to enact measures to preclude the need to list the species. The gopher tortoise Candidate Conservation Agreement identified an assessment of the status of populations on protected lands as a priority and line transect distance sampling (LTDS) was adopted as the standardized survey methodology. Surveys with LTDS rely on detection of gopher tortoise burrows because tortoises are fossorial. However, gopher tortoise burrows vary greatly in size and small burrows of juveniles are rarely detected. Although LTDS is statistically robust and allows for imperfect detection, few studies have examined how detection varies with tortoise burrow size and whether habitat structure may influence detection of gopher tortoise burrows. Both factors could affect the accuracy of population estimates using LTDS and interpretation of demographic parameters needed for the Candidate Conservation Agreement. Therefore, we conducted surveys for burrows using LTDS before (28 March–13 April 2016) and after (9–18 May 2016) a prescribed burn, which reduced vegetation cover. We detected significantly more burrows (P < 0.001, n = 651) of all sizes after the burn, and the burrow abundance estimate was 64% higher postburn. Our study showed that conducting gopher tortoise surveys after a prescribed burn increased detections and provided a more accurate population estimate. We therefore recommend conducting surveys immediately after a burn. However, varying burn cycles on large sites may make it difficult to survey following a prescribed burn and because the effects of a burn on habitat structure may vary within a site, methods to account for variation in detection due to habitat structure are needed. Population estimates for gopher tortoises using LTDS that do not account for variation in detection due to habitat structure likely underestimate population size.


2017 ◽  
Vol 8 (2) ◽  
pp. 377-386 ◽  
Author(s):  
Jonathan M. Stober ◽  
Rocio Prieto-Gonzalez ◽  
Lora L. Smith ◽  
Tiago A. Marques ◽  
Len Thomas

Abstract Gopher tortoises (Gopherus polyphemus) are candidates for range-wide listing as threatened under the U.S. Endangered Species Act. Reliable population estimates are important to inform policy and management for recovery of the species. Line transect distance sampling has been adopted as the preferred method to estimate population size. However, when tortoise density is low, it can be challenging to obtain enough tortoise observations to reliably estimate the probability of detection, a vital component of the method. We suggest a modification to the method based on counting usable tortoise burrows (more abundant than tortoises) and separately accounting for the proportion of burrows occupied by tortoises. The increased sample size of burrows can outweigh the additional uncertainty induced by the need to account for the proportion of burrows occupied. We demonstrate the method using surveys conducted within a 13,118-ha portion of the Gopher Tortoise Habitat Management Unit at Fort Gordon Army Installation, Georgia. We used a systematic random design to obtain more precise estimates, using a newly developed systematic variance estimator. Individual transects had a spatially efficient design (pseudocircuits), which greatly improved sampling efficiency on this large site. Estimated burrow density was 0.091 ± 0.011 burrows/ha (CV = 12.6%, 95% CI = 0.071–0.116), with 25% of burrows occupied by a tortoise (CV = 14.4%), yielding a tortoise density of 0.023 ± 0.004 tortoise/ha (CV = 19.0%, 95% CI = 0.016–0.033) and a population estimate of 297 tortoises (95% CI = 210–433). These techniques are applicable to other studies and species. Surveying burrows or nests, rather than animals, can produce more reliable estimates when it leads to a significantly larger sample of detections and when the occupancy status can reliably be ascertained. Systematic line transect survey designs give better precision and are practical to implement and analyze.


Author(s):  
Katherine C Kral-O’Brien ◽  
Adrienne K Antonsen ◽  
Torre J Hovick ◽  
Ryan F Limb ◽  
Jason P Harmon

Abstract Many methods are used to survey butterfly populations, with line transect and area surveys being prominent. Observers are typically limited to search within 5 or 10 m from the line, while observers are unrestricted in larger specified search regions in area surveys. Although methods differ slightly, the selection is often based on producing defendable data for conservation, maximizing data quality, and minimizing effort. To guide method selection, we compared butterfly surveys using 1) line versus area methods and 2) varying width transects (5 m, 10 m, or unrestricted) using count data from surveys in North Dakota from 2015 to 2018. Between line and area surveys, we detected more individuals with area surveys, even when accounting for effort. However, both methods accumulated new species at similar rates. When comparing transect methodology, we detected nearly 60% more individuals and nine more species when transect width increased from 5 m to unrestricted, despite similar effort across methodology. Overall, we found line surveys slightly less efficient at detecting individuals, but they collected similar species richness to area surveys when accounting for effort. Additionally, line surveys allow the use of unrestricted-width transects with distance sampling procedures, which were more effective at detecting species and individuals while providing a means to correct count data over the same transect length. Methods that reduce effort and accurately depict communities are especially important for conservation when long-term datasets are unavailable.


2016 ◽  
Vol 94 (7) ◽  
pp. 505-515 ◽  
Author(s):  
Thomas A. Jefferson ◽  
Mari A. Smultea ◽  
Sarah S. Courbis ◽  
Gregory S. Campbell

The harbor porpoise (Phocoena phocoena (L., 1758)) used to be common in Puget Sound, Washington, but virtually disappeared from these waters by the 1970s. We conducted systematic aerial line-transect surveys (17 237 km total effort) for harbor porpoises, with the goal of estimating density and abundance in the inland waters of Washington State. Surveys in Puget Sound occurred throughout the year from 2013 to 2015, and in the Strait of Juan de Fuca and the San Juan Islands (and some adjacent Canadian waters) in April 2015. We used a high-wing, twin-engine Partenavia airplane and four observers (one on each side of the plane, one looking through a belly port, and one recording data). A total of 1063 harbor porpoise groups were sighted. Density and abundance were estimated using conventional distance sampling methods. Analyses were limited to 447 harbor porpoise groups observed during 5708 km of effort during good sighting conditions suitable for line-transect analysis. Harbor porpoises occurred in all regions of the study area, with highest densities around the San Juan Islands and in northern Puget Sound. Overall, estimated abundance for the Washington Inland Waters stock was 11 233 porpoises (CV = 37%, 95% CI = 9 616 – 13 120). This project clearly demonstrated that harbor porpoises have reoccupied waters of Puget Sound and are present there in all seasons. However, the specific reasons for their initial decline and subsequent recovery remain uncertain.


2011 ◽  
Vol 38 (3) ◽  
pp. 221 ◽  
Author(s):  
Tom A. Porteus ◽  
Suzanne M. Richardson ◽  
Jonathan C. Reynolds

Context Sampling methods to estimate animal density require good survey design to ensure assumptions are met and sampling is representative of the survey area. Management decisions are often made based on these estimates. However, without knowledge of true population size it is not possible for wildlife biologists to evaluate how biased the estimates can be if survey design is compromised. Aims Our aims were to use distance sampling to estimate population size for domestic sheep free-ranging within large enclosed areas of hill country and, by comparing estimates against actual numbers, examine how bias and precision are impaired when survey design is compromised. Methods We used both line and point transect sampling to derive estimates of density for sheep on four farms in upland England. In Stage I we used limited effort and different transect types to compromise survey design. In Stage II we increased effort in an attempt to improve on the Stage I estimates. We also examined the influence of a walking observer on sheep behaviour to assess compliance with distance sampling assumptions and to improve the fit of models to the data. Key results Our results show that distance sampling can lead to biased and imprecise density estimates if survey design is poor, particularly when sampling high density and mobile species that respond to observer presence. In Stage I, walked line transects were least biased; point transects were most biased. Increased effort in Stage II reduced the bias in walked line transect estimates. For all estimates, the actual density was within the derived 95% confidence intervals, but some of these spanned a range of over 100 sheep per km2. Conclusions Using a population of known size, we showed that survey design is vitally important in achieving unbiased and precise density estimation using distance sampling. Adequate transect replication reduced the bias considerably within a compromised survey design. Implications Management decisions based on poorly designed surveys must be made with an appropriate understanding of estimate uncertainty. Failure to do this may lead to ineffective management.


Sign in / Sign up

Export Citation Format

Share Document