terrestrial life
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 94)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Bo Dong ◽  
Jing Liu ◽  
Bing Chen ◽  
Yuqi Huang ◽  
Peng Ai ◽  
...  

Abstract -Purpose: The adaptability of blue-spotted mudskipper (Boleophthalmus Periophthalmodon; BP) and giant-fin mudskipper (Periophthalmus magnuspinnatus; PM), has been previously reported at the genome level to explain their amphibious life. However, the roles of GI microbiota in their adaptation to the terrestrial life are worth exploring. -Methods: In this study, we mainly utilized metagenomic data from these two representative mudskippers and typical aquicolous fish species to obtain microbial composition, diversity, abundance and potential functions of GI microbiota for comparisons between amphibious and aquicolous fishes. Meanwhile, we summarized the GI microbiota results of representative seawater fishes, freshwater fishes, amphibians, and terrestrial animals by literature mining for comparing those of the mudskippers. -Result: Interestingly the content for each dominant phylum was strikingly different among BP, PM and aquicolous fishes. We also observed that the profile of GI microbiota in mudskippers owned the typical bacterial families for the terrestrial animals, (freshwater and seawater) fishes, and amphibians at the same time, which is consistent with their life style of water-to-land and freshwater to seawater transition. More interestingly, certain bacteria strains like S24-7, previously thought to be specific in terrestrial animals, were also identified in both BP and PM. -Conclusion: The various composite and diversity of mudskipper GI microflora are therefore considered to conduce to their terrestrial adaptation in these amphibious fishes.


Author(s):  
Paul Cisek

This article outlines a hypothetical sequence of evolutionary innovations, along the lineage that produced humans, which extended behavioural control from simple feedback loops to sophisticated control of diverse species-typical actions. I begin with basic feedback mechanisms of ancient mobile animals and follow the major niche transitions from aquatic to terrestrial life, the retreat into nocturnality in early mammals, the transition to arboreal life and the return to diurnality. Along the way, I propose a sequence of elaboration and diversification of the behavioural repertoire and associated neuroanatomical substrates. This includes midbrain control of approach versus escape actions, telencephalic control of local versus long-range foraging, detection of affordances by the dorsal pallium, diversified control of nocturnal foraging in the mammalian neocortex and expansion of primate frontal, temporal and parietal cortex to support a wide variety of primate-specific behavioural strategies. The result is a proposed functional architecture consisting of parallel control systems, each dedicated to specifying the affordances for guiding particular species-typical actions, which compete against each other through a hierarchy of selection mechanisms. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.


Author(s):  
Ramandeep Kaur ◽  
Joginder Singh

Cypermethrin insecticide is widely used to prevent and control pest and crop diseases though, its residues have caused significant damage to the environment and living organisms. Microbial remediation becomes a popular approach to counter the toxicity of cypermethrin in both aquatic as well as terrestrial life. Cypermethrin can be effectively degraded to nontoxic compounds by bacterial and fungal strains. Various bacterial and fungal strains such as Ochrobactrum lupini DG-S-01, Bacillus sp. strain SG2, Azoarcus indigens strain HZ5, Streptomyces aureus strain HP-S-01, and Aspergillus oryzae M-4 are used for the cypermethrin degradation. Extensive usage of cypermethrin has caused problems such as surface water contamination, reduced fertility of the soil, detrimental effects on soil microbiota and non-targeted species. Due to environmental concerns associated with the cypermethrin in groundwater and food products, there is a crucial need to develop economical, rapid, and reliable techniques that can be used for field applications. An in-depth understanding of cypermethrin is explored in this review paper and possible solutions to mitigate its environmental toxicity are suggested.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bernd Ackermann ◽  
Beatrix Dünschede ◽  
Björn Pietzenuk ◽  
Bo Højen Justesen ◽  
Ute Krämer ◽  
...  

Members of the Oxa1/YidC/Alb3 protein family are involved in the insertion, folding, and assembly of membrane proteins in mitochondria, bacteria, and chloroplasts. The thylakoid membrane protein Alb3 mediates the chloroplast signal recognition particle (cpSRP)-dependent posttranslational insertion of nuclear-encoded light harvesting chlorophyll a/b-binding proteins and participates in the biogenesis of plastid-encoded subunits of the photosynthetic complexes. These subunits are cotranslationally inserted into the thylakoid membrane, yet very little is known about the molecular mechanisms underlying docking of the ribosome-nascent chain complexes to the chloroplast SecY/Alb3 insertion machinery. Here, we show that nanodisc-embedded Alb3 interacts with ribosomes, while the homolog Alb4, also located in the thylakoid membrane, shows no ribosome binding. Alb3 contacts the ribosome with its C-terminal region and at least one additional binding site within its hydrophobic core region. Within the C-terminal region, two conserved motifs (motifs III and IV) are cooperatively required to enable the ribosome contact. Furthermore, our data suggest that the negatively charged C-terminus of the ribosomal subunit uL4c is involved in Alb3 binding. Phylogenetic analyses of uL4 demonstrate that this region newly evolved in the green lineage during the transition from aquatic to terrestrial life.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pauline Chatelain ◽  
Jeremy Astier ◽  
David Wendehenne ◽  
Claire Rosnoblet ◽  
Sylvain Jeandroz

In animals, NO is synthesized from L-arginine by three isoforms of nitric oxide synthase (NOS) enzyme. NO production and effects have also been reported in plants but the identification of its sources, especially the enzymatic ones, remains one of the critical issues in the field. NOS-like activities have been reported, although there are no homologs of mammalian NOS in the land plant genomes sequenced so far. However, several NOS homologs have been found in algal genomes and transcriptomes. A first study has characterized a functional NOS in the chlorophyte Ostreococcus tauri and the presence of NOS homologs was later confirmed in a dozen algae. These results raise the questions of the significance of the presence of NOS and their molecular diversity in algae. We hypothesize that comparisons among protein structures of the two KnNOS, together with the identification of their interacting partner proteins, might allow a better understanding of the molecular diversification and functioning of NOS in different physiological contexts and, more generally, new insights into NO signaling in photosynthetic organisms. We recently identified two NOS homologs sequences in the genome of the streptophyte Klebsormidium nitens, a model alga in the study of plant adaptation to terrestrial life. The first sequence, named KnNOS1, contains canonical NOS signatures while the second, named KnNOS2, presents a large C-ter extension including a globin domain. In order to identify putative candidates for KnNOSs partner proteins, we draw the protein–protein interaction networks of the three human NOS using the BioGRID database and hypothesized on the biological role of K. nitens orthologs. Some of these conserved partners are known to be involved in mammalian NOSs regulation and functioning. In parallel, our methodological strategy for the identification of partner proteins of KnNOS1 and KnNOS2 by in vitro pull-down assay is presented.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1892
Author(s):  
Tatsuyuki Ishii ◽  
Ikkei Takashimizu ◽  
Martin Miguel Casco-Robles ◽  
Yuji Taya ◽  
Shunsuke Yuzuriha ◽  
...  

In surgical and cosmetic studies, scarless regeneration is an ideal method to heal skin wounds. To study the technologies that enable scarless skin wound healing in medicine, animal models are useful. However, four-limbed vertebrates, including humans, generally lose their competency of scarless regeneration as they transit to their terrestrial life-stages through metamorphosis, hatching or birth. Therefore, animals that serve as a model for postnatal humans must be an exception to this rule, such as the newt. Here, we evaluated the adult newt in detail for the first time. Using a Japanese fire-bellied newt, Cynops pyrrhogaster, we excised the full-thickness skin at various locations on the body, and surveyed their re-epithelialization, granulation or dermal fibrosis, and recovery of texture and appendages as well as color (hue, tone and pattern) for more than two years. We found that the skin of adult newts eventually regenerated exceptionally well through unique processes of re-epithelialization and the absence of fibrotic scar formation, except for the dorsal-lateral to ventral skin whose unique color patterns never recovered. Color pattern is species-specific. Consequently, the adult C. pyrrhogaster provides an ideal model system for studies aimed at perfect skin wound healing and regeneration in postnatal humans.


2021 ◽  
Author(s):  
Frederick L. Coolidge ◽  
Thomas Wynn ◽  
Karenleigh A. Overmann ◽  
James M. Hicks

Cognitive archaeology uses cognitive and psychological models to interpret the archaeological record. This chapter outlines several components that may be essential in building effective cognitive archaeological arguments. It also presents a two-stage perspective for the development of modern cognition, primarily based upon the work of Coolidge and Wynn. The first describes the transition from arboreal to terrestrial life in later Homo and the possible cognitive repercussions of terrestrial sleep. The second stage proposes that a genetic event may have enhanced working memory in Homo sapiens (specifically in terms of Baddeley’s multicomponent working memory model). The present chapter also reviews the archaeological and neurological bases for modern thinking, and the latter arguments are primarily grounded in the significance of the morphometric rescaling of the parietal lobes, which appears to have distinguished Homo sapiens from Neandertals.


2021 ◽  
Author(s):  
José Miguel Valderrama-Martín ◽  
Francisco Ortigosa ◽  
Concepción Ávila ◽  
Francisco M. Cánovas ◽  
Bertrand Hirel ◽  
...  

Glutamine synthetase (GS) is a key enzyme responsible for the incorporation of inorganic nitrogen in the form of ammonium into the amino acid glutamine. The genes encoding GS are among the oldest existing genes in living organisms. In plants, two groups of functional GS enzymes are found: eubacterial GSIIb (GLN2) and eukaryotic GSIIe (GLN1/GS). Phylogenetic analyses have shown that the GLN2 group originated from bacteria following horizontal gene transfer. Only GLN1/GS genes are found in vascular plants, which suggests that they are involved in the final adaptation of plants to terrestrial life. The present phylogenetic study reclassifies the different GS of seed plants into three clusters: GS1a, GS1b and GS2. The presence of genes encoding GS2 has been expanded to Cycadopsida gymnosperms, which suggests the origin of this gene in a common ancestor of Cycadopsida, Ginkgoopsida and angiosperms. GS1a genes have been identified in all gymnosperms, basal angiosperms and some Magnoliidae species. Previous studies in conifers and the gene expression profiles obtained in ginkgo and magnolia in the present work could explain the absence of GS1a in more recent angiosperm species (e.g., monocots and eudicots) due to the redundant roles of GS1a and GS2 in photosynthetic cells. Altogether, the results provide a better understanding of the evolution of plant GS isoenzymes and their physiological roles, which is valuable for improving crop nitrogen use efficiency and productivity.


2021 ◽  
Author(s):  
Paul R. Elsen ◽  
Earl C. Saxon ◽  
B. Alexander Simmons ◽  
Michelle Ward ◽  
Brooke A. Williams ◽  
...  

2021 ◽  
Vol 1 ◽  
Author(s):  
Dimitri Seidenath ◽  
Anja Holzinger ◽  
Klara Kemnitz ◽  
Nico Langhof ◽  
Darleen Lücker ◽  
...  

Insects are integral to terrestrial life and provide essential ecosystem functions such as pollination and nutrient cycling. Due to massive declines in insect biomass, abundance, or species richness in recent years, the focus has turned to find their causes. Anthropogenic pollution is among the main drivers of insect declines. Research addressing the effects of pollutants concentrates on aquatic insects and pollinators, despite the apparent risk of contaminated soils. Pollutants accumulating in the soil might pose a significant threat because concentrations tend to be high and different pollutants are present simultaneously. Here, we exposed queens of the black garden ant Lasius niger at the colony founding stage to different concentrations and combinations of pollutants (brake dust, soot, microplastic particles and fibers, manure) to determine dose-dependent effects and interactions between stressors. As proxies for colony founding success, we measured queen survival, the development time of the different life stages, the brood weight, and the number of offspring. Over the course of the experiment queen mortality was very low and similar across treatments. Only high manure concentrations affected the colony founding success. Eggs from queens exposed to high manure concentrations took longer to hatch, which resulted in a delayed emergence of workers. Also, fewer pupae and workers were raised by those queens. Brake dust, soot and plastic particles did not visibly affect colony founding success, neither as single nor as multiple stressors. The application of manure, however, affected colony founding in L. niger negatively underlining the issue of excessive manure application to our environment. Even though anthropogenic soil pollutants seem to have little short-term effects on ant colony founding, studies will have to elucidate potential long-term effects as a colony grows.


Sign in / Sign up

Export Citation Format

Share Document