Identification of major ADH genes in ethanol metabolism of Pichia pastoris

Yeast ◽  
2019 ◽  
Vol 37 (2) ◽  
pp. 227-236
Author(s):  
Mert Karaoğlan ◽  
Fidan Erden‐Karaoğlan ◽  
Semiramis Yılmaz ◽  
Mehmet İnan
Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 225
Author(s):  
Lei Xuan ◽  
Jianfeng Hua ◽  
Fan Zhang ◽  
Zhiquan Wang ◽  
Xiaoxiao Pei ◽  
...  

The Taxodium hybrid ‘Zhongshanshan 406’ (T. hybrid ‘Zhongshanshan 406’) [Taxodium mucronatum Tenore × Taxodium distichum (L.). Rich] has an outstanding advantage in flooding tolerance and thus has been widely used in wetland afforestation in China. Alcohol dehydrogenase genes (ADHs) played key roles in ethanol metabolism to maintain energy supply for plants in low-oxygen conditions. Two ADH genes were isolated and characterized—ThADH1 and ThADH4 (GenBank ID: AWL83216 and AWL83217—basing on the transcriptome data of T. hybrid ‘Zhongshanshan 406’ grown under waterlogging stress. Then the functions of these two genes were investigated through transient expression and overexpression. The results showed that the ThADH1 and ThADH4 proteins both fall under ADH III subfamily. ThADH1 was localized in the cytoplasm and nucleus, whereas ThADH4 was only localized in the cytoplasm. The expression of the two genes was stimulated by waterlogging and the expression level in roots was significantly higher than those in stems and leaves. The respective overexpression of ThADH1 and ThADH4 in Populus caused the opposite phenotype, while waterlogging tolerance of the two transgenic Populus significantly improved. Collectively, these results indicated that genes ThADH1 and ThADH4 were involved in the tolerance and adaptation to anaerobic conditions in T. hybrid ‘Zhongshanshan 406’.


2015 ◽  
Vol 38 (3) ◽  
pp. 463-469 ◽  
Author(s):  
Mert Karaoglan ◽  
Fidan Erden Karaoglan ◽  
Mehmet Inan

1991 ◽  
Vol 82 (1) ◽  
pp. 103-108
Author(s):  
P. Perata ◽  
A. Alpi

1972 ◽  
Vol 33 (3) ◽  
pp. 751-755 ◽  
Author(s):  
Mary K. Roach ◽  
Myrna Khan ◽  
Marguerite Knapp ◽  
W. N. Reese

2015 ◽  
Vol 37 (1se) ◽  
Author(s):  
Duong Long Duy ◽  
Pham Minh Vu ◽  
Nguyen Tri Nhan ◽  
Tran Linh Thuoc ◽  
Dang Thi Phuong Thao

Author(s):  
Rafid A. Abdulkareem

The main goal of the current study was cloning and expression of the human insulin gene in Pichia pastoris expression system, using genetic engineering techniques and its treatment application. Total RNA was purified from fresh normal human pancreatic tissue. RNA of good quality was chosen to obtain a first single strand cDNA. Human preproinsulin gene was amplified from cDNA strand, by using two sets of specific primers contain EcoR1 and Notl restriction sites. The amplified preproinsulin gene fragment was double digested with EcoRI and Not 1 restriction enzymes, then inserted into pPIC9K expression vector. The new pPIC9K-hpi constructive expression vector was transformed by the heat-shock method into the E.coli DH5α competent cells. pPic9k –hpi, which was propagated in the positive transformant E. coli cells, was isolated from cells and then linearised by restriction enzyme SalI, then transformed into Pichia pastoris GS115 using electroporation method. Genomic DNA of His+ transformants cell was extracted and used as a template for PCR analysis. The results showed, that the pPic9k – hpi was successfully integrated into the P. pastoris genome, for selected His+ transformants clones on the anticipated band at 330 bp, which is corresponded to the theoretical molecular size of the human insulin gene. To follow the insulin expression in transformans, Tricine–SDS gel electrophoresis and Western blot analysis were conducted. The results showed a successful expression of recombinant protein was detected by the presence of a single major band with about (5.8 KDa) on the gel. These bands correspond well with the size of human insulin with the theoretical molecular weight (5.8 KDa).


2010 ◽  
Vol 36 (6) ◽  
pp. 1091-1096
Author(s):  
Shu-Guang BIAN ◽  
Hua-Xin CHEN ◽  
Peng JIANG ◽  
Hai-Bo ZHANG ◽  
Zhao-Pu LIU ◽  
...  

2018 ◽  
Vol 34 (4) ◽  
pp. 18-25 ◽  
Author(s):  
T.L. Gordeeva ◽  
◽  
L.N. Borshchevskaya ◽  
A.N. Kalinina ◽  
S.P. Sineoky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document