Existence result for a fluid structure interaction problem with friction type slip boundary condition

Author(s):  
L. Baffico ◽  
T. Sassi
Author(s):  
N. Aquelet ◽  
H. Lesourne ◽  
M. Souli

A methodology to predict the capacity of a nuclear submarine hull to act as a protective container and energy absorber under impact by an another underwater structure is needed. Principia Marine, company of Research in Shipbuilding (formerly IRCN, Institut de Recherche en Construction Navale), is responding to this need by developing an underwater impact crash prediction methodology based upon LS-DYNA3D software. Several physical phenomena with their own characteristic times follow one another at the time of the shock. So different but complementary tasks to develop this methodology were worked individually. This paper deals with contribution to this ongoing program that breaks up into two objectives. The first goal aims to highlight the effect of water on the structural deformation at the time of the collision between a nuclear submarine and a tanker ram bow, which is generally plane. The two-dimensional modelling of this collision uses an Eulerian formulation for the fluid and a Lagrangian formulation for the structure. The fluid-structure interaction is treated by an Euler/Lagrange penalty coupling. This method of coupling, which makes it possible to transmit the efforts in pressure of the Eulerian grid to the Lagrangian grid and conversely, is relatively a recent algorithmic development. It was successfully used in many scientific and industrial applications: the modelling of the attack of birds on the fuselage of a Jet for the Boeing Corporation, the underwater explosion shaking the oil platforms, and airbag simulation… The requirements of modelling for this algorithm are increasingly pointed. Thus, the second objective of this paper is to compare the results in pressures and velocities near the bulb for two cases, in the first one, the bulb is modelled by a slip boundary condition, in the second one, the bulb is a rigid Lagrangian structure, which involves the use of the Euler/Lagrange penalty coupling.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Martin Bušík ◽  
Martin Slavík ◽  
Ivan Cimrák

Modelling of cell flow for biomedical applications relies in many cases on the correct description of fluid-structure interaction between the cell membrane and the surrounding fluid. We analyse the coupling of the lattice-Boltzmann method for the fluid and the spring network model for the cells. We investigate the bare friction parameter of fluid-structure interaction that is mediated via dissipative coupling. Such coupling mimics the no-slip boundary condition at the interface between the fluid and object. It is an alternative method to the immersed boundary method. Here, the fluid-structure coupling is provided by forces penalising local differences between velocities of the object’s boundaries and the surrounding fluid. The method includes a phenomenological friction coefficient that determines the strength of the coupling. This work aims at determination of proper values of such friction coefficient. We derive an explicit formula for computation of this coefficient depending on the mesh density assuming a reference friction is known. We validate this formula on spherical and ellipsoidal objects. We also provide sensitivity analysis of the formula on all parameters entering the model. We conclude that such formula may be used also for objects with irregular shapes provided that the triangular mesh covering the object’s surface is in some sense uniform. Our findings are justified by two computational experiments where we simulate motion of a red blood cell in a capillary and in a shear flow. Both experiments confirm our results presented in this work.


2010 ◽  
Vol 65 (1-3) ◽  
pp. 150-165 ◽  
Author(s):  
S. Ii ◽  
K. Sugiyama ◽  
S. Takeuchi ◽  
S. Takagi ◽  
Y. Matsumoto

2008 ◽  
Vol 58 (12) ◽  
pp. 1951-1971 ◽  
Author(s):  
E.H. van Brummelen ◽  
K.G. van der Zee ◽  
R. de Borst

Sign in / Sign up

Export Citation Format

Share Document